IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i9p2734-2760.html
   My bibliography  Save this article

On the empirical spectral distribution for matrices with long memory and independent rows

Author

Listed:
  • Merlevède, F.
  • Peligrad, M.

Abstract

In this paper we show that the empirical eigenvalue distribution of any sample covariance matrix generated by independent samples of a stationary regular sequence has a limiting distribution depending only on the spectral density of the sequence. We characterize this limit in terms of Stieltjes transform via a certain simple equation. No rate of convergence to zero of the covariances is imposed, so, the underlying process can exhibit long memory. If the stationary sequence has trivial left sigma field the result holds without any other additional assumptions. This is always true if the entries are functions of i.i.d.

Suggested Citation

  • Merlevède, F. & Peligrad, M., 2016. "On the empirical spectral distribution for matrices with long memory and independent rows," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2734-2760.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:9:p:2734-2760
    DOI: 10.1016/j.spa.2016.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916000466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Y. Q., 1986. "Limiting spectral distribution for a class of random matrices," Journal of Multivariate Analysis, Elsevier, vol. 20(1), pages 50-68, October.
    2. Yin, Y. Q. & Krishnaiah, P. R., 1983. "A limit theorem for the eigenvalues of product of two random matrices," Journal of Multivariate Analysis, Elsevier, vol. 13(4), pages 489-507, December.
    3. Davis, Richard A. & Pfaffel, Oliver & Stelzer, Robert, 2014. "Limit theory for the largest eigenvalues of sample covariance matrices with heavy-tails," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 18-50.
    4. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    5. Banna, Marwa & Merlevède, Florence & Peligrad, Magda, 2015. "On the limiting spectral distribution for a large class of symmetric random matrices with correlated entries," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2700-2726.
    6. Rosenblatt, M., 2009. "A comment on a conjecture of N. Wiener," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 347-348, February.
    7. Guangming Pan & Jiti Gao & Yanrong Yang, 2014. "Testing Independence Among a Large Number of High-Dimensional Random Vectors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 600-612, June.
    8. Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavel Yaskov, 2018. "LLN for Quadratic Forms of Long Memory Time Series and Its Applications in Random Matrix Theory," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2032-2055, December.
    2. Sanders, Jaron & Van Werde, Alexander, 2023. "Singular value distribution of dense random matrices with block Markovian dependence," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 453-504.
    3. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    4. Patrice Abry & B. Cooper Boniece & Gustavo Didier & Herwig Wendt, 2023. "Wavelet eigenvalue regression in high dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 1-32, April.
    5. A. Lytova, 2018. "Central Limit Theorem for Linear Eigenvalue Statistics for a Tensor Product Version of Sample Covariance Matrices," Journal of Theoretical Probability, Springer, vol. 31(2), pages 1024-1057, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Z.D. & Miao, Baiqi & Jin, Baisuo, 2007. "On limit theorem for the eigenvalues of product of two random matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 76-101, January.
    2. Jin, Baisuo & Wang, Cheng & Miao, Baiqi & Lo Huang, Mong-Na, 2009. "Limiting spectral distribution of large-dimensional sample covariance matrices generated by VARMA," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2112-2125, October.
    3. Olivier Ledoit & Sandrine P�ch�, 2009. "Eigenvectors of some large sample covariance matrices ensembles," IEW - Working Papers 407, Institute for Empirical Research in Economics - University of Zurich.
    4. He, Yi & Jaidee, Sombut & Gao, Jiti, 2023. "Most powerful test against a sequence of high dimensional local alternatives," Journal of Econometrics, Elsevier, vol. 234(1), pages 151-177.
    5. Yi He & Sombut Jaidee & Jiti Gao, 2020. "Most Powerful Test against High Dimensional Free Alternatives," Monash Econometrics and Business Statistics Working Papers 13/20, Monash University, Department of Econometrics and Business Statistics.
    6. M. Capitaine, 2013. "Additive/Multiplicative Free Subordination Property and Limiting Eigenvectors of Spiked Additive Deformations of Wigner Matrices and Spiked Sample Covariance Matrices," Journal of Theoretical Probability, Springer, vol. 26(3), pages 595-648, September.
    7. Pan, Guangming, 2010. "Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1330-1338, July.
    8. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    9. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    10. Xinghua Zheng & Yingying Li, 2010. "On the estimation of integrated covariance matrices of high dimensional diffusion processes," Papers 1005.1862, arXiv.org, revised Mar 2012.
    11. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2014. "On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 215-228.
    12. Marwa Banna & Florence Merlevède, 2015. "Limiting Spectral Distribution of Large Sample Covariance Matrices Associated with a Class of Stationary Processes," Journal of Theoretical Probability, Springer, vol. 28(2), pages 745-783, June.
    13. Huanchao Zhou & Zhidong Bai & Jiang Hu, 2023. "The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1203-1226, June.
    14. Ningning Xia & Zhidong Bai, 2015. "Functional CLT of eigenvectors for large sample covariance matrices," Statistical Papers, Springer, vol. 56(1), pages 23-60, February.
    15. Claudio Heinrich & Mark Podolskij, 2014. "On spectral distribution of high dimensional covariation matrices," CREATES Research Papers 2014-54, Department of Economics and Business Economics, Aarhus University.
    16. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    17. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    18. Baik, Jinho & Silverstein, Jack W., 2006. "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1382-1408, July.
    19. Rubio, Francisco & Mestre, Xavier, 2011. "Spectral convergence for a general class of random matrices," Statistics & Probability Letters, Elsevier, vol. 81(5), pages 592-602, May.
    20. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:9:p:2734-2760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.