IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1308.0931.html
   My bibliography  Save this paper

Optimal Linear Shrinkage Estimator for Large Dimensional Precision Matrix

Author

Listed:
  • Taras Bodnar
  • Arjun K. Gupta
  • Nestor Parolya

Abstract

In this work we construct an optimal shrinkage estimator for the precision matrix in high dimensions. We consider the general asymptotics when the number of variables $p\rightarrow\infty$ and the sample size $n\rightarrow\infty$ so that $p/n\rightarrow c\in (0, +\infty)$. The precision matrix is estimated directly, without inverting the corresponding estimator for the covariance matrix. The recent results from the random matrix theory allow us to find the asymptotic deterministic equivalents of the optimal shrinkage intensities and estimate them consistently. The resulting distribution-free estimator has almost surely the minimum Frobenius loss. Additionally, we prove that the Frobenius norms of the inverse and of the pseudo-inverse sample covariance matrices tend almost surely to deterministic quantities and estimate them consistently. At the end, a simulation is provided where the suggested estimator is compared with the estimators for the precision matrix proposed in the literature. The optimal shrinkage estimator shows significant improvement and robustness even for non-normally distributed data.

Suggested Citation

  • Taras Bodnar & Arjun K. Gupta & Nestor Parolya, 2013. "Optimal Linear Shrinkage Estimator for Large Dimensional Precision Matrix," Papers 1308.0931, arXiv.org, revised Mar 2014.
  • Handle: RePEc:arx:papers:1308.0931
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1308.0931
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2014. "On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 215-228.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Rubio, Francisco & Mestre, Xavier, 2011. "Spectral convergence for a general class of random matrices," Statistics & Probability Letters, Elsevier, vol. 81(5), pages 592-602, May.
    5. Taras Bodnar & Arjun K. Gupta, 2013. "Bowling Green State University, Bowling Green," Statistica, Department of Statistics, University of Bologna, vol. 73(3), pages 303-316.
    6. Sarr, Amadou & Gupta, Arjun K., 2009. "Estimation of the precision matrix of multivariate Kotz type model," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 742-752, April.
    7. Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
    8. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    9. Silverstein, J. W. & Choi, S. I., 1995. "Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 295-309, August.
    10. Paul, Debashis & Silverstein, Jack W., 2009. "No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 37-57, January.
    11. Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
    12. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    13. Cai, Tony & Liu, Weidong & Luo, Xi, 2011. "A Constrained â„“1 Minimization Approach to Sparse Precision Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 594-607.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sumanjay Dutta & Shashi Jain, 2023. "Precision versus Shrinkage: A Comparative Analysis of Covariance Estimation Methods for Portfolio Allocation," Papers 2305.11298, arXiv.org.
    2. Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    2. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2016. "Direct shrinkage estimation of large dimensional precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 223-236.
    4. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2014. "On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 215-228.
    5. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    6. Taras Bodnar & Yarema Okhrin & Nestor Parolya, 2022. "Optimal Shrinkage-Based Portfolio Selection in High Dimensions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 140-156, December.
    7. Li, Hua & Bai, Zhidong & Wong, Wing-Keung & McAleer, Michael, 2022. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Econometrics and Statistics, Elsevier, vol. 24(C), pages 133-150.
    8. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    9. Olivier Ledoit & Michael Wolf, 2017. "Analytical nonlinear shrinkage of large-dimensional covariance matrices," ECON - Working Papers 264, Department of Economics - University of Zurich, revised Nov 2018.
    10. Tsubasa Ito & Tatsuya Kubokawa, 2015. "Linear Ridge Estimator of High-Dimensional Precision Matrix Using Random Matrix Theory ," CIRJE F-Series CIRJE-F-995, CIRJE, Faculty of Economics, University of Tokyo.
    11. Ledoit, Olivier & Wolf, Michael, 2015. "Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
    12. Yuasa, Ryota & Kubokawa, Tatsuya, 2020. "Ridge-type linear shrinkage estimation of the mean matrix of a high-dimensional normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    13. Couillet, Romain & Kammoun, Abla & Pascal, Frédéric, 2016. "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 249-274.
    14. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
    15. Couillet, Romain & McKay, Matthew, 2014. "Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 99-120.
    16. Taras Bodnar & Stepan Mazur & Nestor Parolya, 2019. "Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix‐variate location mixture of normal distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 636-660, June.
    17. Olivier Ledoit & Sandrine P�ch�, 2009. "Eigenvectors of some large sample covariance matrices ensembles," IEW - Working Papers 407, Institute for Empirical Research in Economics - University of Zurich.
    18. Ledoit, Olivier & Wolf, Michael, 2021. "Shrinkage estimation of large covariance matrices: Keep it simple, statistician?," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    19. Olivier Ledoit & Michael Wolf, 2013. "Optimal estimation of a large-dimensional covariance matrix under Stein’s loss," ECON - Working Papers 122, Department of Economics - University of Zurich, revised Mar 2017.
    20. Jianqing Fan & Alex Furger & Dacheng Xiu, 2016. "Incorporating Global Industrial Classification Standard Into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 489-503, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1308.0931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.