My bibliography
Save this item
A comparative analysis of data mining methods in predicting NCAA bowl outcomes
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tai, Chung-Ching & Lin, Hung-Wen & Chie, Bin-Tzong & Tung, Chen-Yuan, 2019. "Predicting the failures of prediction markets: A procedure of decision making using classification models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 297-312.
- Mustafa Pamuk & Matthias Schumann, 2023. "Opening a New Era with Machine Learning in Financial Services? Forecasting Corporate Credit Ratings Based on Annual Financial Statements," IJFS, MDPI, vol. 11(3), pages 1-20, July.
- Yu Zhao & Shaopeng Wei & Yu Guo & Qing Yang & Xingyan Chen & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "Combining Intra-Risk and Contagion Risk for Enterprise Bankruptcy Prediction Using Graph Neural Networks," Papers 2202.03874, arXiv.org, revised Jul 2022.
- Graham James & Mayberry John, 2014. "Measures of tactical efficiency in water polo," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(1), pages 67-79, January.
- Alberto Tron & Maurizio Dallocchio & Salvatore Ferri & Federico Colantoni, 2023. "Corporate governance and financial distress: lessons learned from an unconventional approach," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(2), pages 425-456, June.
- Gondia, Ahmed & Moussa, Ahmed & Ezzeldin, Mohamed & El-Dakhakhni, Wael, 2023. "Machine learning-based construction site dynamic risk models," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
- Amani, Farzaneh A. & Fadlalla, Adam M., 2017. "Data mining applications in accounting: A review of the literature and organizing framework," International Journal of Accounting Information Systems, Elsevier, vol. 24(C), pages 32-58.
- Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
- Jiang, Cuiqing & Lyu, Ximei & Yuan, Yufei & Wang, Zhao & Ding, Yong, 2022. "Mining semantic features in current reports for financial distress prediction: Empirical evidence from unlisted public firms in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1086-1099.
- Sami Ben Jabeur & Nicolae Stef & Pedro Carmona, 2023. "Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 715-741, February.
- Duan, Yunlong & Mu, Chang & Yang, Meng & Deng, Zhiqing & Chin, Tachia & Zhou, Li & Fang, Qifeng, 2021. "Study on early warnings of strategic risk during the process of firms’ sustainable innovation based on an optimized genetic BP neural networks model: Evidence from Chinese manufacturing firms," International Journal of Production Economics, Elsevier, vol. 242(C).
- Marcos Vizcaíno-González & Juan Pineiro-Chousa & Jorge Sáinz-González, 2017. "Selecting explanatory factors of voting decisions by means of fsQCA and ANN," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2049-2061, September.
- Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
- Mohammad Shamsu Uddin & Guotai Chi & Mazin A. M. Al Janabi & Tabassum Habib & Kunpeng Yuan, 2022. "Modeling credit risk with a multi‐stage hybrid model: An alternative statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1386-1415, November.
- Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.
- Carlos Serrano-Cinca & Yolanda Fuertes-Call鮠 & Bego uti鲲ez-Nieto & Beatriz Cuellar-Fernᮤez, 2014.
"Path modelling to bankruptcy: causes and symptoms of the banking crisis,"
Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3798-3811, November.
- Carlos Serrano-Cinca & Y. Fuertes-Callén & Begoña Gutiérrez-Nieto & B. Cuéllar-Fernández, 2011. "Path modeling to bankruptcy: causes and symptoms of the banking crisis," Working Papers CEB 11-007, ULB -- Universite Libre de Bruxelles.
- Keller, Jonas & von der Gracht, Heiko A., 2014. "The influence of information and communication technology (ICT) on future foresight processes — Results from a Delphi survey," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 81-92.
- TOBBACK, Ellen & MOEYERSOMS, Julie & STANKOVA, Marija & MARTENS, David, 2016. "Bankruptcy prediction for SMEs using relational data," Working Papers 2016004, University of Antwerp, Faculty of Business and Economics.
- María Escribano-Navas & German Gemar, 2021. "Gender and Bankruptcy: A Hotel Survival Econometric Analysis," Sustainability, MDPI, vol. 13(12), pages 1-13, June.
- José Alejandro Fernández Fernández & Virginia Bejarano Vázquez & Juan Antonio Vicente Virseda, 2019. "Evaluación de riesgos con Data Mining: el sistema financiero español," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 14(3), pages 309-328, Julio - S.
- Praphula Kumar Jain & Waris Quamer & Rajendra Pamula, 2021. "Sports result prediction using data mining techniques in comparison with base line model," OPSEARCH, Springer;Operational Research Society of India, vol. 58(1), pages 54-70, March.
- Shaoming Cheng & Sukumar Ganapati & Giri Narasimhan & Farzana Beente Yusuf, 2022. "A machine learning‐based analysis of 311 requests in the Miami‐Dade County," Growth and Change, Wiley Blackwell, vol. 53(4), pages 1627-1645, December.
- Yazan F. Roumani, 2023. "Sports analytics in the NFL: classifying the winner of the superbowl," Annals of Operations Research, Springer, vol. 325(1), pages 715-730, June.
- Almaskati, Nawaf & Bird, Ron & Yeung, Danny & Lu, Yue, 2021. "A horse race of models and estimation methods for predicting bankruptcy," Advances in accounting, Elsevier, vol. 52(C).
- Tsai, Chih-Fong & Sue, Kuen-Liang & Hu, Ya-Han & Chiu, Andy, 2021. "Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction," Journal of Business Research, Elsevier, vol. 130(C), pages 200-209.
- Jun Woo Kim & Mar Magnusen & Seunghoon Jeong, 2023. "March Madness prediction: Different machine learning approaches with non‐box score statistics," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2223-2236, June.
- Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
- Marcio Salles Melo Lima & Enes Eryarsoy & Dursun Delen, 2021. "Predicting and Explaining Pig Iron Production on Charcoal Blast Furnaces: A Machine Learning Approach," Interfaces, INFORMS, vol. 51(3), pages 213-235, May.
- Ioannis Anagnostopoulos & Anas Rizeq, 2021. "Conventional and neural network target‐matching methods dynamics: The information technology mergers and acquisitions market in the USA," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(2), pages 97-118, April.
- Liang, Deron & Tsai, Chih-Fong & Lu, Hung-Yuan (Richard) & Chang, Li-Shin, 2020. "Combining corporate governance indicators with stacking ensembles for financial distress prediction," Journal of Business Research, Elsevier, vol. 120(C), pages 137-146.
- Benevento, Elisabetta & Aloini, Davide & Squicciarini, Nunzia, 2023. "Towards a real-time prediction of waiting times in emergency departments: A comparative analysis of machine learning techniques," International Journal of Forecasting, Elsevier, vol. 39(1), pages 192-208.
- Dominik Dellermann & Nikolaus Lipusch & Philipp Ebel & Jan Marco Leimeister, 2019. "Design principles for a hybrid intelligence decision support system for business model validation," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(3), pages 423-441, September.
- Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
- Ben Jabeur, Sami & Serret, Vanessa, 2023. "Bankruptcy prediction using fuzzy convolutional neural networks," Research in International Business and Finance, Elsevier, vol. 64(C).
- ben Jabeur, Sami & Mefteh-Wali, Salma & Carmona, Pedro, 2021. "The impact of institutional and macroeconomic conditions on aggregate business bankruptcy," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 108-119.
- Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- B. Jay Coleman, 2014. "Minimum violations and predictive meta‐rankings for college football," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(1), pages 17-33, February.
- Cankaya, Burak & Topuz, Kazim & Delen, Dursun & Glassman, Aaron, 2023. "Evidence-based managerial decision-making with machine learning: The case of Bayesian inference in aviation incidents," Omega, Elsevier, vol. 120(C).
- Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.