IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v120y2023ics0305048323000701.html
   My bibliography  Save this article

Evidence-based managerial decision-making with machine learning: The case of Bayesian inference in aviation incidents

Author

Listed:
  • Cankaya, Burak
  • Topuz, Kazim
  • Delen, Dursun
  • Glassman, Aaron

Abstract

Understanding the factors behind aviation incidents is essential, not only because of the lethality of the accidents but also the incidents' direct and indirect economic impact. Even minor incidents trigger significant economic damage and create disruptions to aviation operations. It is crucial to investigate these incidents to understand the underlying reasons and hence, reduce the risk associated with physical and financial safety in a precarious industry like aviation. The findings may provide decision-makers with a causally accurate means of investigating the topic while untangling the difficulties concerning the statistical associations and causal effects. This research aims to identify the significant variables and their probabilistic dependencies/relationships determining the degree of aircraft damage. The value and the contribution of this study include (1) developing a fully automatic ML prediction-based DSS for aircraft damage severity, (2) conducting a deep network analysis of affinity between predicting variables using probabilistic graphical modeling (PGM), and (3) implementing a user-friendly dashboard to interpret the business insight coming from the design and development of the Bayesian Belief Network (BBN). By leveraging a large, real-world dataset, the proposed methodology captures the probability-based interrelations among air terminal, flight, flight crew, and air-vehicle-related characteristics as explanatory variables, thereby revealing the underlying, complex interactions in accident severity. This research contributes significantly to the current body of knowledge by defining and proving a methodology for automatically categorizing aircraft damage severity based on flight, aircraft, and PIC (pilot in command) information. Moreover, the study combines the findings of the Bayesian Belief Networks with decades of aviation expertise of the subject matter expert, drawing and explaining the association map to find the root causes of the problems and accident relayed variables.

Suggested Citation

  • Cankaya, Burak & Topuz, Kazim & Delen, Dursun & Glassman, Aaron, 2023. "Evidence-based managerial decision-making with machine learning: The case of Bayesian inference in aviation incidents," Omega, Elsevier, vol. 120(C).
  • Handle: RePEc:eee:jomega:v:120:y:2023:i:c:s0305048323000701
    DOI: 10.1016/j.omega.2023.102906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048323000701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2023.102906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marais, Karen B. & Robichaud, Matthew R., 2012. "Analysis of trends in aviation maintenance risk: An empirical approach," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 104-118.
    2. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Geldermann, Jutta & Bertsch, Valentin & Treitz, Martin & French, Simon & Papamichail, Konstantinia N. & Hämäläinen, Raimo P., 2009. "Multi-criteria decision support and evaluation of strategies for nuclear remediation management," Omega, Elsevier, vol. 37(1), pages 238-251, February.
    4. Rao, Arjun H. & Marais, Karen, 2018. "High risk occurrence chains in helicopter accidents," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 83-98.
    5. Kazim Topuz & Brett D. Jones & Sumeyra Sahbaz & Murad Moqbel, 2021. "Methodology to combine theoretical knowledge with a data-driven probabilistic graphical model," Journal of Business Analytics, Taylor & Francis Journals, vol. 4(2), pages 125-139, July.
    6. Sa, Constantijn A.A. & Santos, Bruno F. & Clarke, John-Paul B., 2020. "Portfolio-based airline fleet planning under stochastic demand," Omega, Elsevier, vol. 97(C).
    7. Kazim Topuz & Hasmet Uner & Asil Oztekin & Mehmet Bayram Yildirim, 2018. "Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network," Annals of Operations Research, Springer, vol. 263(1), pages 479-499, April.
    8. Zuidberg, Joost, 2017. "Exploring the determinants for airport profitability: Traffic characteristics, low-cost carriers, seasonality and cost efficiency," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 61-72.
    9. Burak Cankaya & Ezra Wari & Berna Eren Tokgoz, 2019. "Practical approaches to chemical tanker scheduling in ports: a case study on the Port of Houston," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(4), pages 559-575, December.
    10. Simsek, Serhat & Dag, Ali & Tiahrt, Thomas & Oztekin, Asil, 2021. "A Bayesian Belief Network-based probabilistic mechanism to determine patient no-show risk categories," Omega, Elsevier, vol. 100(C).
    11. Misiunas, Nicholas & Oztekin, Asil & Chen, Yao & Chandra, Kavitha, 2016. "DEANN: A healthcare analytic methodology of data envelopment analysis and artificial neural networks for the prediction of organ recipient functional status," Omega, Elsevier, vol. 58(C), pages 46-54.
    12. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    13. Mohammadi, Majid & Rezaei, Jafar, 2020. "Bayesian best-worst method: A probabilistic group decision making model," Omega, Elsevier, vol. 96(C).
    14. N NIKOLAYKIN & N NIKOLAYKINA & Vladimir SEKERIN & Anna GOROKHVA, 2017. "Environmental and Economic Model of an Aircraft Accident Evaluation," Journal of Advanced Research in Management, ASERS Publishing, vol. 8(5), pages 1128-1135.
    15. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1076-1101.
    16. Potrawa, Tomasz & Tetereva, Anastasija, 2022. "How much is the view from the window worth? Machine learning-driven hedonic pricing model of the real estate market," Journal of Business Research, Elsevier, vol. 144(C), pages 50-65.
    17. Dursun Delen & Sudha Ram, 2018. "Research challenges and opportunities in business analytics," Journal of Business Analytics, Taylor & Francis Journals, vol. 1(1), pages 2-12, January.
    18. Kattan, Michael W. & Cooper, Randolph B., 2000. "A simulation of factors affecting machine learning techniques: an examination of partitioning and class proportions," Omega, Elsevier, vol. 28(5), pages 501-512, October.
    19. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    20. Delen, Dursun & Cogdell, Douglas & Kasap, Nihat, 2012. "A comparative analysis of data mining methods in predicting NCAA bowl outcomes," International Journal of Forecasting, Elsevier, vol. 28(2), pages 543-552.
    21. McFadden, K. L., 1996. "Comparing pilot-error accident rates of male and female airline pilots," Omega, Elsevier, vol. 24(4), pages 443-450, August.
    22. Yafei Li, 2019. "Analysis and Forecast of Global Civil Aviation Accidents for the Period 1942-2016," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-12, February.
    23. David L. Olson & Dursun Delen, 2008. "Advanced Data Mining Techniques," Springer Books, Springer, number 978-3-540-76917-0, June.
    24. Villarroel Ordenes, Francisco & Silipo, Rosaria, 2021. "Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications," Journal of Business Research, Elsevier, vol. 137(C), pages 393-410.
    25. repec:srs:journl:jemt:v:8:y:2017:i:5:p:1128-1135 is not listed on IDEAS
    26. Chang, Yuanjiang & Wu, Xiangfei & Zhang, Changshuai & Chen, Guoming & Liu, Xiuquan & Li, Jiayi & Cai, Baoping & Xu, Liangbin, 2019. "Dynamic Bayesian networks based approach for risk analysis of subsea wellhead fatigue failure during service life," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 454-462.
    27. Pohl, Maximilian & Kolisch, Rainer & Schiffer, Maximilian, 2021. "Runway scheduling during winter operations," Omega, Elsevier, vol. 102(C).
    28. van Giffen, Benjamin & Herhausen, Dennis & Fahse, Tobias, 2022. "Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods," Journal of Business Research, Elsevier, vol. 144(C), pages 93-106.
    29. Ersin Ancel & Ann T. Shih & Sharon M. Jones & Mary S. Reveley & James T. Luxhøj & Joni K. Evans, 2015. "Predictive safety analytics: inferring aviation accident shaping factors and causation," Journal of Risk Research, Taylor & Francis Journals, vol. 18(4), pages 428-451, April.
    30. Gribkovskaia, Irina & Halskau, Oyvind & Kovalyov, Mikhail Y., 2015. "Minimizing takeoff and landing risk in helicopter pickup and delivery operations," Omega, Elsevier, vol. 55(C), pages 73-80.
    31. Reis, Carolina & Ruivo, Pedro & Oliveira, Tiago & Faroleiro, Paulo, 2020. "Assessing the drivers of machine learning business value," Journal of Business Research, Elsevier, vol. 117(C), pages 232-243.
    32. van Valkenhoef, Gert & Tervonen, Tommi, 2016. "Entropy-optimal weight constraint elicitation with additive multi-attribute utility models," Omega, Elsevier, vol. 64(C), pages 1-12.
    33. Dursun Delen & Hamed M. Zolbanin & Durand Crosby & David Wright, 2021. "To imprison or not to imprison: an analytics model for drug courts," Annals of Operations Research, Springer, vol. 303(1), pages 101-124, August.
    34. Mary E. Thomson & Dilek Önkal & Ali Avcioğlu & Paul Goodwin, 2004. "Aviation Risk Perception: A Comparison Between Experts and Novices," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1585-1595, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sariyer, Gorkem & Mangla, Sachin Kumar & Sozen, Mert Erkan & Li, Guo & Kazancoglu, Yigit, 2024. "Leveraging explainable artificial intelligence in understanding public transportation usage rates for sustainable development," Omega, Elsevier, vol. 127(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    2. Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).
    3. Kazim Topuz & Behrooz Davazdahemami & Dursun Delen, 2024. "A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases," Annals of Operations Research, Springer, vol. 341(1), pages 673-697, October.
    4. Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin & Zhu, Yanzhi, 2020. "Methodology for assessing dependencies between factors influencing airline pilot performance reliability: A case of taxiing tasks," Journal of Air Transport Management, Elsevier, vol. 89(C).
    5. Simsek, Serhat & Dag, Ali & Tiahrt, Thomas & Oztekin, Asil, 2021. "A Bayesian Belief Network-based probabilistic mechanism to determine patient no-show risk categories," Omega, Elsevier, vol. 100(C).
    6. Abreu, Danilo T.M.P. & Maturana, Marcos C. & Droguett, Enrique Lopez & Martins, Marcelo R., 2022. "Human reliability analysis of conventional maritime pilotage operations supported by a prospective model," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Bauranov, Aleksandar & Rakas, Jasenka, 2024. "Bayesian network model of aviation safety: Impact of new communication technologies on mid-air collisions," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Miriam Andrejiova & Anna Grincova & Daniela Marasova & Peter Koščák, 2021. "Civil Aviation Occurrences in Slovakia and Their Evaluation Using Statistical Methods," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    9. Sun, Xuting & Hu, Yue & Qin, Yichen & Zhang, Yuan, 2024. "Risk assessment of unmanned aerial vehicle accidents based on data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    10. Marcio Salles Melo Lima & Enes Eryarsoy & Dursun Delen, 2021. "Predicting and Explaining Pig Iron Production on Charcoal Blast Furnaces: A Machine Learning Approach," Interfaces, INFORMS, vol. 51(3), pages 213-235, May.
    11. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    12. Mustafa Pamuk & Matthias Schumann, 2023. "Opening a New Era with Machine Learning in Financial Services? Forecasting Corporate Credit Ratings Based on Annual Financial Statements," IJFS, MDPI, vol. 11(3), pages 1-20, July.
    13. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Churchwell, Jared S. & Zhang, Katherine S. & Saleh, Joseph H., 2018. "Epidemiology of helicopter accidents: Trends, rates, and covariates," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 373-384.
    15. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    16. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    17. Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
    18. Vangelis Marinakis & Themistoklis Koutsellis & Alexandros Nikas & Haris Doukas, 2021. "AI and Data Democratisation for Intelligent Energy Management," Energies, MDPI, vol. 14(14), pages 1-14, July.
    19. Dilupa Nakandala & Yung Po Tsang & Henry Lau & Carman Ka Man Lee, 2022. "An Industrial Blockchain-Based Multi-Criteria Decision Framework for Global Freight Management in Agricultural Supply Chains," Mathematics, MDPI, vol. 10(19), pages 1-23, September.
    20. Murça, Mayara Condé Rocha, 2018. "Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 97-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:120:y:2023:i:c:s0305048323000701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.