IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v14y2019i3p309-328.html
   My bibliography  Save this article

Evaluación de riesgos con Data Mining: el sistema financiero español

Author

Listed:
  • José Alejandro Fernández Fernández

    (Universidad ESERP, España)

  • Virginia Bejarano Vázquez

    (Universidad ESERP, España)

  • Juan Antonio Vicente Virseda

    (Universidad UNED, España)

Abstract

El objetivo de este trabajo, basado en técnicas de Data Mining, es llegar a identificar el mejor método de predicción de riesgos para el sistema bancario español, teniendo en cuenta tanto sus características específicas, como la situación económica de España en el período objeto de estudio. Para ello, se definen, en primer lugar, catorce ratios que permiten identificar, en términos de riesgos, la situación de los bancos y cajas de ahorros españoles durante el período examinado. Mediante una técnica de reducción de dimensiones con la que se simplifica la interpretación de resultados, se obtienen cuatro factores latentes sobre los que se evalúa, junto con cuatro variables macroeconómicas adicionales,un conjunto de algoritmos de Data Mining, siendo seleccionado finalmente el arbol CHAID, a diferencia de trabajos previos, en los que nunca se había llegado a proponer la aplicación de técnicas de Data Mining y Machine Learning en la identificación de situaciones de riesgo en la industria bancaria española. Una limitación de este trabajo ha sido la imposibilidad de incorporar variables regulatorias, por tratarse de información reservada que, de haber estado disponible, nos habría permitido incorporar una nueva dimensión en la predicción de riesgos.

Suggested Citation

  • José Alejandro Fernández Fernández & Virginia Bejarano Vázquez & Juan Antonio Vicente Virseda, 2019. "Evaluación de riesgos con Data Mining: el sistema financiero español," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 14(3), pages 309-328, Julio - S.
  • Handle: RePEc:imx:journl:v:14:y:2019:i:3:p:309-328
    as

    Download full text from publisher

    File URL: http://www.remef.org.mx/index.php/remef/article/view/349
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
    2. Betz, Frank & Oprică, Silviu & Peltonen, Tuomas A. & Sarlin, Peter, 2014. "Predicting distress in European banks," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 225-241.
    3. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    4. Liviu Tudor & Mădălina Ecaterina Popescu & Marin Andreica, 2015. "A Decision Support System to Predict Financial Distress. The Case Of Romania," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 170-179, December.
    5. Raymond A.K. Cox & Grace W.-Y. Wang, 2014. "Predicting the US bank failure: A discriminant analysis," Economic Analysis and Policy, Elsevier, vol. 44(2), pages 202-211.
    6. Delen, Dursun & Cogdell, Douglas & Kasap, Nihat, 2012. "A comparative analysis of data mining methods in predicting NCAA bowl outcomes," International Journal of Forecasting, Elsevier, vol. 28(2), pages 543-552.
    7. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    8. Canbas, Serpil & Cabuk, Altan & Kilic, Suleyman Bilgin, 2005. "Prediction of commercial bank failure via multivariate statistical analysis of financial structures: The Turkish case," European Journal of Operational Research, Elsevier, vol. 166(2), pages 528-546, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Citterio, Alberto, 2024. "Bank failure prediction models: Review and outlook," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    2. Li Xian Liu & Shuangzhe Liu & Milind Sathye, 2021. "Predicting Bank Failures: A Synthesis of Literature and Directions for Future Research," JRFM, MDPI, vol. 14(10), pages 1-24, October.
    3. Manthoulis, Georgios & Doumpos, Michalis & Zopounidis, Constantin & Galariotis, Emilios, 2020. "An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for US banks," European Journal of Operational Research, Elsevier, vol. 282(2), pages 786-801.
    4. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    5. Alina Mihaela Dima & Simona Vasilache, 2016. "Credit Risk modeling for Companies Default Prediction using Neural Networks," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 127-143, September.
    6. repec:mth:ijafr8:v:8:y:2018:i:3:p:39-50 is not listed on IDEAS
    7. Parnes, Dror & Gormus, Alper, 2024. "Prescreening bank failures with K-means clustering: Pros and cons," International Review of Financial Analysis, Elsevier, vol. 93(C).
    8. Cullen F. Goenner, 2020. "Uncertain times and early predictions of bank failure," The Financial Review, Eastern Finance Association, vol. 55(4), pages 583-601, November.
    9. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    10. Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.
    11. Papanikolaou, Nikolaos I., 2018. "To be bailed out or to be left to fail? A dynamic competing risks hazard analysis," Journal of Financial Stability, Elsevier, vol. 34(C), pages 61-85.
    12. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    13. Layla Khoja & Maxwell Chipulu & Ranadeva Jayasekera, 2016. "Analysing corporate insolvency in the Gulf Cooperation Council using logistic regression and multidimensional scaling," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 483-518, April.
    14. Cleary, Sean & Hebb, Greg, 2016. "An efficient and functional model for predicting bank distress: In and out of sample evidence," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 101-111.
    15. Pham, Xuan T.T. & Ho, Tin H., 2021. "Using boosting algorithms to predict bank failure: An untold story," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 40-54.
    16. Ilyes Abid & Rim Ayadi & Khaled Guesmi & Farid Mkaouar, 2022. "A new approach to deal with variable selection in neural networks: an application to bankruptcy prediction," Annals of Operations Research, Springer, vol. 313(2), pages 605-623, June.
    17. Zhi-Qiang Jiang & Gang-Jin Wang & Askery Canabarro & Boris Podobnik & Chi Xie & H. Eugene Stanley & Wei-Xing Zhou, 2018. "Short term prediction of extreme returns based on the recurrence interval analysis," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 353-370, March.
    18. Kristóf, Tamás & Virág, Miklós, 2022. "EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks," Research in International Business and Finance, Elsevier, vol. 61(C).
    19. Buckmann, Marcus & Gallego Marquez, Paula & Gimpelewicz, Mariana & Kapadia, Sujit & Rismanchi, Katie, 2023. "The more the merrier? Evidence on the value of multiple requirements in bank regulation," Journal of Banking & Finance, Elsevier, vol. 149(C).
    20. Theophilos Papadimitriou & Periklis Gogas & Anna Agrapetidou, 2022. "The resilience of the U.S. banking system," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 2819-2835, July.
    21. Mohammad Shamsu Uddin & Guotai Chi & Mazin A. M. Al Janabi & Tabassum Habib & Kunpeng Yuan, 2022. "Modeling credit risk with a multi‐stage hybrid model: An alternative statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1386-1415, November.

    More about this item

    Keywords

    Data Mining; Machine Learning; métodos de clasificación; predicción de riesgos; solvencia;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • M41 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - Accounting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:14:y:2019:i:3:p:309-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.