IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v51y2021i3p213-235.html
   My bibliography  Save this article

Predicting and Explaining Pig Iron Production on Charcoal Blast Furnaces: A Machine Learning Approach

Author

Listed:
  • Marcio Salles Melo Lima

    (Metalsider, Betim 32602-335, Brazil; Spears School of Business, Oklahoma State University, Tulsa, Oklahoma 74106)

  • Enes Eryarsoy

    (Sabanci Business School, Sabanci University, Istanbul 34956, Turkey)

  • Dursun Delen

    (Spears School of Business, Oklahoma State University, Tulsa, Oklahoma 74106; School of Management, Halic University, Istanbul 34445, Turkey)

Abstract

Pig iron, the source for a variety of iron-based products, is traded in commodity markets. Therefore, enhanced productivity has significant economic implications for the producers. Pig iron is mainly produced inside of tall, vertical, thermodynamic reactors called blast furnaces that run 24 hours a day. The blast furnaces are too complex to model explicitly and are generally regarded as black boxes . In this study, we design, develop, and deploy novel machine learning models on a rich data sample covering more than 20 production variables spanning nine years of actual operational period, collected at one of the largest pig iron production plants in Brazil. We show that, given the blast furnace parameters, machine learning models are capable of unveiling novel insights by illuminating the black box and successfully predicting production levels at different configurations. These prediction models can be used as decision aids to improve production efficiencies. We also perform a sensitivity analysis of the trained models to identify and rank the input variables according to their relative importance. We present our findings, which are largely in line with the existing literature, and confirm their validity, practicality, and usefulness through consultations with subject matter experts.

Suggested Citation

  • Marcio Salles Melo Lima & Enes Eryarsoy & Dursun Delen, 2021. "Predicting and Explaining Pig Iron Production on Charcoal Blast Furnaces: A Machine Learning Approach," Interfaces, INFORMS, vol. 51(3), pages 213-235, May.
  • Handle: RePEc:inm:orinte:v:51:y:2021:i:3:p:213-235
    DOI: 10.1287/inte.2020.1058
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2020.1058
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2020.1058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. Swayambhu Chatterjee & Shuyuan Deng & Jun Liu & Ronghua Shan & Wu Jiao, 2018. "Classifying facts and opinions in Twitter messages: a deep learning-based approach," Journal of Business Analytics, Taylor & Francis Journals, vol. 1(1), pages 29-39, January.
    3. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    4. Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
    5. Delen, Dursun & Cogdell, Douglas & Kasap, Nihat, 2012. "A comparative analysis of data mining methods in predicting NCAA bowl outcomes," International Journal of Forecasting, Elsevier, vol. 28(2), pages 543-552.
    6. David L. Olson & Dursun Delen, 2008. "Advanced Data Mining Techniques," Springer Books, Springer, number 978-3-540-76917-0, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Jabeur, Sami & Serret, Vanessa, 2023. "Bankruptcy prediction using fuzzy convolutional neural networks," Research in International Business and Finance, Elsevier, vol. 64(C).
    2. Matthew Harding & Gabriel F. R. Vasconcelos, 2022. "Managers versus Machines: Do Algorithms Replicate Human Intuition in Credit Ratings?," Papers 2202.04218, arXiv.org.
    3. Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    4. Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.
    5. Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
    6. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    7. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    8. Fischer, Thomas G., 2018. "Reinforcement learning in financial markets - a survey," FAU Discussion Papers in Economics 12/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    9. Knoll, Julian & Stübinger, Johannes & Grottke, Michael, 2017. "Exploiting social media with higher-order Factorization Machines: Statistical arbitrage on high-frequency data of the S&P 500," FAU Discussion Papers in Economics 13/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    10. Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    11. Guillaume Coqueret & Tony Guida, 2020. "Training trees on tails with applications to portfolio choice," Post-Print hal-04144665, HAL.
    12. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    13. Fischer, Thomas & Krauss, Christopher, 2017. "Deep learning with long short-term memory networks for financial market predictions," FAU Discussion Papers in Economics 11/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    14. Mercadier, Mathieu & Lardy, Jean-Pierre, 2019. "Credit spread approximation and improvement using random forest regression," European Journal of Operational Research, Elsevier, vol. 277(1), pages 351-365.
    15. Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
    16. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    17. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    18. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    19. Mert Edali, 2022. "Pattern‐oriented analysis of system dynamics models via random forests," System Dynamics Review, System Dynamics Society, vol. 38(2), pages 135-166, April.
    20. Jian Ni & Yue Xu, 2023. "Forecasting the Dynamic Correlation of Stock Indices Based on Deep Learning Method," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 35-55, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:51:y:2021:i:3:p:213-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.