IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v35y2019i1p297-312.html
   My bibliography  Save this article

Predicting the failures of prediction markets: A procedure of decision making using classification models

Author

Listed:
  • Tai, Chung-Ching
  • Lin, Hung-Wen
  • Chie, Bin-Tzong
  • Tung, Chen-Yuan

Abstract

Prediction markets have been an important source of information for decision makers due to their high ex post accuracies. Nevertheless, recent failures of prediction markets remind us of the importance of ex ante assessments of their prediction accuracy. This paper proposes a systematic procedure for decision makers to acquire prediction models which may be used to predict the correctness of winner-take-all markets. We commence with a set of classification models and generate combined models following various rules. We also create artificial records in the training datasets to overcome the imbalanced data issue in classification problems. These models are then empirically trained and tested with a large dataset to see which may best be used to predict the failures of prediction markets. We find that no model can universally outperform others in terms of different performance measures. Despite this, we clearly demonstrate a result of capable models for decision makers based on different decision goals.

Suggested Citation

  • Tai, Chung-Ching & Lin, Hung-Wen & Chie, Bin-Tzong & Tung, Chen-Yuan, 2019. "Predicting the failures of prediction markets: A procedure of decision making using classification models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 297-312.
  • Handle: RePEc:eee:intfor:v:35:y:2019:i:1:p:297-312
    DOI: 10.1016/j.ijforecast.2018.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207018300657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2018.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly Busche, 2008. "Efficient Market Results in an Asian Setting," World Scientific Book Chapters, in: Donald B Hausch & Victor SY Lo & William T Ziemba (ed.), Efficiency Of Racetrack Betting Markets, chapter 61, pages 615-616, World Scientific Publishing Co. Pte. Ltd..
    2. Erik Snowberg & Justin Wolfers, 2010. "Explaining the Favorite-Long Shot Bias: Is it Risk-Love or Misperceptions?," Journal of Political Economy, University of Chicago Press, vol. 118(4), pages 723-746, August.
    3. Alasdair Brown & Dooruj Rambaccussing & J. James Reade & Giambattista Rossi, 2016. "Using Social Media to Identify Market Inefficiencies: Evidence from Twitter and Betfair," Dundee Discussion Papers in Economics 293, Economic Studies, University of Dundee.
    4. Andrew Leigh & Justin Wolfers, 2006. "Competing Approaches to Forecasting Elections: Economic Models, Opinion Polling and Prediction Markets," The Economic Record, The Economic Society of Australia, vol. 82(258), pages 325-340, September.
    5. Victor S. Y. Lo & Kelly Busche, 2008. "How Accurately Do Bettors Bet in Doubles ?," World Scientific Book Chapters, in: Donald B Hausch & Victor SY Lo & William T Ziemba (ed.), Efficiency Of Racetrack Betting Markets, chapter 46, pages 465-468, World Scientific Publishing Co. Pte. Ltd..
    6. Deck, Cary & Lin, Shengle & Porter, David, 2013. "Affecting policy by manipulating prediction markets: Experimental evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 48-62.
    7. Leighton Vaughan Williams & J. James Reade, 2016. "Forecasting Elections," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(4), pages 308-328, July.
    8. Gandar, John M. & Zuber, Richard A. & Lamb, Reinhold P., 2001. "The home field advantage revisited: a search for the bias in other sports betting markets," Journal of Economics and Business, Elsevier, vol. 53(4), pages 439-453.
    9. John M. Gandar & Richard A. Zuber & William H. Dare, 2000. "The Search for Informed Traders in the Totals Betting Market for National Basketball Association Games," Journal of Sports Economics, , vol. 1(2), pages 177-186, May.
    10. Leighton Vaughan Williams & David Paton, 1998. "Why are some favourite-longshot biases positive and others negative?," Applied Economics, Taylor & Francis Journals, vol. 30(11), pages 1505-1510.
    11. Raymond D. Sauer, 1998. "The Economics of Wagering Markets," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2021-2064, December.
    12. Karen Croxson & J. James Reade, 2014. "Information and Efficiency: Goal Arrival in Soccer Betting," Economic Journal, Royal Economic Society, vol. 124(575), pages 62-91, March.
    13. Hung-Wen Lin & Chen-yuan Tung & Jason Yeh, 2013. "Multivariate Methods In Assessing The Accuracy Of Prediction Markets Ex Ante Based On Ohe Highest-Price Criterion," Journal of Prediction Markets, University of Buckingham Press, vol. 7(3), pages 29-44.
    14. Leighton Vaughan Williams & David Paton, 1997. "Does information efficiency require a perception of information inefficiency?," Applied Economics Letters, Taylor & Francis Journals, vol. 4(10), pages 615-617.
    15. Woodland, Linda M & Woodland, Bill M, 1994. "Market Efficiency and the Favorite-Longshot Bias: The Baseball Betting Market," Journal of Finance, American Finance Association, vol. 49(1), pages 269-279, March.
    16. Newman, Bruce I & Sheth, Jagdish N, 1985. "A Model of Primary Voter Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 12(2), pages 178-187, September.
    17. Gabriel, Paul E & Marsden, James R, 1990. "An Examination of Market Efficiency in British Racetrack Betting," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 874-885, August.
    18. Chen-yuan Tung & Tzu-Chuan Chou & Jih-wen Lin & Hsin-yi Lin, 2011. "Comparing The Forecasting Accuracy Of Prediction Markets And Polls For Taiwan’S Presidential And Mayoral Elections," Journal of Prediction Markets, University of Buckingham Press, vol. 5(3), pages 1-26.
    19. Leighton Vaughan Williams & J. James Reade, 2016. "Prediction Markets, Social Media and Information Efficiency," Kyklos, Wiley Blackwell, vol. 69(3), pages 518-556, August.
    20. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    21. Smith, Michael A. & Paton, David & Williams, Leighton Vaughan, 2009. "Do bookmakers possess superior skills to bettors in predicting outcomes?," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 539-549, August.
    22. Busche, Kelly & Hall, Christopher D, 1988. "An Exception to the Risk Preference Anomaly," The Journal of Business, University of Chicago Press, vol. 61(3), pages 337-346, July.
    23. Forsythe, Robert & Forrest Nelson & George R. Neumann & Jack Wright, 1992. "Anatomy of an Experimental Political Stock Market," American Economic Review, American Economic Association, vol. 82(5), pages 1142-1161, December.
    24. Franck, Egon & Verbeek, Erwin & Nüesch, Stephan, 2010. "Prediction accuracy of different market structures -- bookmakers versus a betting exchange," International Journal of Forecasting, Elsevier, vol. 26(3), pages 448-459, July.
    25. Delen, Dursun & Cogdell, Douglas & Kasap, Nihat, 2012. "A comparative analysis of data mining methods in predicting NCAA bowl outcomes," International Journal of Forecasting, Elsevier, vol. 28(2), pages 543-552.
    26. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    27. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    28. Berkowitz, Jason P. & Depken, Craig A. & Gandar, John M., 2017. "A favorite-longshot bias in fixed-odds betting markets: Evidence from college basketball and college football," The Quarterly Review of Economics and Finance, Elsevier, vol. 63(C), pages 233-239.
    29. Forsythe, Robert & Rietz, Thomas A. & Ross, Thomas W., 1999. "Wishes, expectations and actions: a survey on price formation in election stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 39(1), pages 83-110, May.
    30. Luminita STATE & Catalina COCIANU & Doina FUSARU, 2010. "A Survey on Potential of the Support Vector Machines in Solving Classification and Regression Problems," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 14(3), pages 128-139.
    31. Vaughan Williams, Leighton, 1999. "Information Efficiency in Betting Markets: A Survey," Bulletin of Economic Research, Wiley Blackwell, vol. 51(1), pages 1-30, January.
    32. Ali, Mukhtar M, 1979. "Some Evidence of the Efficiency of a Speculative Market," Econometrica, Econometric Society, vol. 47(2), pages 387-392, March.
    33. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    34. repec:bla:econom:v:54:y:1987:i:215:p:289-98 is not listed on IDEAS
    35. Snyder, Wayne W, 1978. "Horse Racing: Testing the Efficient Markets Model," Journal of Finance, American Finance Association, vol. 33(4), pages 1109-1118, September.
    36. Kenneth Oliven & Thomas A. Rietz, 2004. "Suckers Are Born but Markets Are Made: Individual Rationality, Arbitrage, and Market Efficiency on an Electronic Futures Market," Management Science, INFORMS, vol. 50(3), pages 336-351, March.
    37. Adi Schnytzer & Guy Weinberg, 2008. "Testing for Home Team and Favorite Biases in the Australian Rules Football Fixed-Odds and Point Spread Betting Markets," Journal of Sports Economics, , vol. 9(2), pages 173-190, April.
    38. Wilton, Peter C & Pessemier, Edgar A, 1981. "Forecasting the Ultimate Acceptance of an Innovation: The Effects of Information," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 8(2), pages 162-171, September.
    39. Simona Rasciute & Paul Downward & William H Greene, 2017. "Do Relational Goods Raise Well-Being? An Econometric Analysis," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(4), pages 563-579, September.
    40. Marco Ottaviani & Peter Norman Sorensen, 2010. "Noise, Information, and the Favorite-Longshot Bias in Parimutuel Predictions," American Economic Journal: Microeconomics, American Economic Association, vol. 2(1), pages 58-85, February.
    41. Gabriel, Paul E & Marsden, James R, 1991. "An Examination of Efficiency in British Racetrack Betting: Errata and Corrections," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 657-659, June.
    42. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzán, Alfred G., 2014. "Combining forecasts: An application to elections," International Journal of Forecasting, Elsevier, vol. 30(1), pages 43-54.
    43. Berg, Joyce E. & Nelson, Forrest D. & Rietz, Thomas A., 2008. "Prediction market accuracy in the long run," International Journal of Forecasting, Elsevier, vol. 24(2), pages 285-300.
    44. Alasdair Brown & Dooruj Rambaccussing & J. James Reade & Giambattista Rossi, 2016. "Using Social Media to Identify Market Ine!ciencies: Evidence from Twitter and Betfair," Working Papers 2016-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    45. Dillon, William R & Mulani, Narendra & Frederick, Donald G, 1989. "On the Use of Component Scores in the Presence of Group Structure," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 16(1), pages 106-112, June.
    46. Rosen, Dennis L & Granbois, Donald H, 1983. "Determinants of Role Structure in Family Financial Management," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 10(2), pages 253-258, September.
    47. R. Bird & M. McCrae, 2008. "The Efficiency Of Racetrack Betting Markets: Australian Evidence," World Scientific Book Chapters, in: Donald B Hausch & Victor SY Lo & William T Ziemba (ed.), Efficiency Of Racetrack Betting Markets, chapter 57, pages 575-582, World Scientific Publishing Co. Pte. Ltd..
    48. ., 2017. "Econometric analysis: loopholes and shortcomings," Chapters, in: Econometrics as a Con Art, chapter 5, pages 88-105, Edward Elgar Publishing.
    49. Paul W. Rhode & Koleman S. Strumpf, 2004. "Historical Presidential Betting Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 127-141, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Veganzones, David & Séverin, Eric & Chlibi, Souhir, 2023. "Influence of earnings management on forecasting corporate failure," International Journal of Forecasting, Elsevier, vol. 39(1), pages 123-143.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sung, Ming-Chien & McDonald, David C.J. & Johnson, Johnnie E.V. & Tai, Chung-Ching & Cheah, Eng-Tuck, 2019. "Improving prediction market forecasts by detecting and correcting possible over-reaction to price movements," European Journal of Operational Research, Elsevier, vol. 272(1), pages 389-405.
    2. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    3. Jaiho Chung & Joon Ho Hwang, 2010. "An Empirical Examination of the Parimutuel Sports Lottery Market versus the Bookmaker Market," Southern Economic Journal, John Wiley & Sons, vol. 76(4), pages 884-905, April.
    4. Jinook Jeong & Jee Young Kim & Yoon Jae Ro, 2019. "On the efficiency of racetrack betting market: a new test for the favourite-longshot bias," Applied Economics, Taylor & Francis Journals, vol. 51(54), pages 5817-5828, November.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Jason P. Berkowitz & Craig A. Depken II & John M. Gandar, 2018. "The Conversion of Money Lines Into Win Probabilities," Journal of Sports Economics, , vol. 19(7), pages 990-1015, October.
    7. Erik Snowberg & Justin Wolfers, 2010. "Explaining the Favorite-Long Shot Bias: Is it Risk-Love or Misperceptions?," Journal of Political Economy, University of Chicago Press, vol. 118(4), pages 723-746, August.
    8. Philip W. S. Newall & Dominic Cortis, 2021. "Are Sports Bettors Biased toward Longshots, Favorites, or Both? A Literature Review," Risks, MDPI, vol. 9(1), pages 1-9, January.
    9. M. Sung & J. E. V. Johnson, 2010. "Revealing Weak‐Form Inefficiency in a Market for State Contingent Claims: The Importance of Market Ecology, Modelling Procedures and Investment Strategies," Economica, London School of Economics and Political Science, vol. 77(305), pages 128-147, January.
    10. Yu, Dian & Gao, Jianjun & Wang, Tongyao, 2022. "Betting market equilibrium with heterogeneous beliefs: A prospect theory-based model," European Journal of Operational Research, Elsevier, vol. 298(1), pages 137-151.
    11. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    12. Alasdair Brown & Dooruj Rambaccussing & J. James Reade & Giambattista Rossi, 2016. "Using Social Media to Identify Market Ine!ciencies: Evidence from Twitter and Betfair," Working Papers 2016-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    13. Alistair C. Bruce & Johnnie E. V. Johnson & John D. Peirson & Jiejun Yu, 2009. "An Examination of the Determinants of Biased Behaviour in a Market for State Contingent Claims," Economica, London School of Economics and Political Science, vol. 76(302), pages 282-303, April.
    14. Alasdair Brown & Dooruj Rambaccussing & James Reade & Giambattista Rossi, 2016. "Using Social Media to Identify Market Inefficiencies: Evidence from Twitter and Betfair," Economics Discussion Papers em-dp2016-01, Department of Economics, University of Reading.
    15. Russell Sobel & S. Travis Raines, 2003. "An examination of the empirical derivatives of the favourite-longshot bias in racetrack betting," Applied Economics, Taylor & Francis Journals, vol. 35(4), pages 371-385.
    16. Hwang, Joon Ho & Kim, Min-Su, 2015. "Misunderstanding of the binomial distribution, market inefficiency, and learning behavior: Evidence from an exotic sports betting market," European Journal of Operational Research, Elsevier, vol. 243(1), pages 333-344.
    17. Peeters, Thomas, 2018. "Testing the Wisdom of Crowds in the field: Transfermarkt valuations and international soccer results," International Journal of Forecasting, Elsevier, vol. 34(1), pages 17-29.
    18. Goto, Shingo & Yamada, Toru, 2023. "What drives biased odds in sports betting markets: Bettors’ irrationality and the role of bookmakers," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 252-270.
    19. Joyce E. Berg & John Geweke & Thomas A. Rietz, 2010. "Memoirs of an indifferent trader: Estimating forecast distributions from prediction markets," Quantitative Economics, Econometric Society, vol. 1(1), pages 163-186, July.
    20. Nikolaos Vlastakis & George Dotsis & Raphael N. Markellos, 2009. "How efficient is the European football betting market? Evidence from arbitrage and trading strategies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 426-444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:1:p:297-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.