IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v61y2014i1p17-33.html
   My bibliography  Save this article

Minimum violations and predictive meta‐rankings for college football

Author

Listed:
  • B. Jay Coleman

Abstract

This article presents two meta‐ranking models that minimize or nearly minimize violations of past game results while predicting future game winners as well as or better than leading current systems—a combination never before offered for college football. Key to both is the development and integration of a highly predictive ensemble probability model generated from the analysis of 36 existing college football ranking systems. This ensemble model is used to determine a target ranking that is used in two versions of a hierarchical multiobjective mixed binary integer linear program (MOMBILP). When compared to 75 other systems out‐of‐sample, one MOMBILP was the leading predictive system while getting within 0.64% of the retrodictive optimum; the other MOMBILP minimized violations while achieving a prediction total that was 2.55% lower than the best mark. For bowls, prediction sums were not statistically significantly different from the leading value, while achieving optimum or near‐optimum violation counts. This performance points to these models as potential means of reconciling the contrasting perspectives of predictiveness versus the matching of past performance when it comes to ranking fairness in college football. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 61: 17–33, 2014

Suggested Citation

  • B. Jay Coleman, 2014. "Minimum violations and predictive meta‐rankings for college football," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(1), pages 17-33, February.
  • Handle: RePEc:wly:navres:v:61:y:2014:i:1:p:17-33
    DOI: 10.1002/nav.21563
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21563
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul Kvam & Joel S. Sokol, 2006. "A logistic regression/Markov chain model for NCAA basketball," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 788-803, December.
    2. Itay Fainmesser & Chaim Fershtman & Neil Gandal, 2009. "A Consistent Weighted Ranking Scheme With an Application to NCAA College Football Rankings," Journal of Sports Economics, , vol. 10(6), pages 582-600, December.
    3. B. Jay Coleman, 2005. "Minimizing Game Score Violations in College Football Rankings," Interfaces, INFORMS, vol. 35(6), pages 483-496, December.
    4. Stern H S, 2006. "In Favor of A Quantitative Boycott of the Bowl Championship Series," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(1), pages 1-6, January.
    5. Miles William W & Fowks Gary T & Coulter Lisa O, 2010. "AccuV College Football Ranking Model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-17, July.
    6. Gill Ryan & Keating Jerome, 2009. "Assessing Methods for College Football Rankings," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-21, May.
    7. Delen, Dursun & Cogdell, Douglas & Kasap, Nihat, 2012. "A comparative analysis of data mining methods in predicting NCAA bowl outcomes," International Journal of Forecasting, Elsevier, vol. 28(2), pages 543-552.
    8. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    9. Ray Fair & John Oster, 2002. "College Football Rankings and Market Efficiency," Yale School of Management Working Papers amz2377, Yale School of Management, revised 01 Aug 2007.
    10. Paul Goodwin, 2009. "New Evidence on the Value of Combining Forecasts," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 12, pages 33-35, Winter.
    11. West Brady T & Lamsal Madhur, 2008. "A New Application of Linear Modeling in the Prediction of College Football Bowl Outcomes and the Development of Team Ratings," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(3), pages 1-21, July.
    12. Buchman Susan & Kadane Joseph B., 2008. "Reweighting the Bowl Championship Series," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(3), pages 1-13, July.
    13. Joseph Martinich, 2002. "College Football Rankings: Do the Computers Know Best?," Interfaces, INFORMS, vol. 32(5), pages 85-94, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delen, Dursun & Cogdell, Douglas & Kasap, Nihat, 2012. "A comparative analysis of data mining methods in predicting NCAA bowl outcomes," International Journal of Forecasting, Elsevier, vol. 28(2), pages 543-552.
    2. Karl Andrew T., 2012. "The Sensitivity of College Football Rankings to Several Modeling Choices," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-44, October.
    3. Wigness Maggie B & Williams Chadd C & Rowell Michael J, 2010. "A New Iterative Method for Ranking College Football Teams," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(2), pages 1-15, April.
    4. Buchman Susan & Kadane Joseph B., 2008. "Reweighting the Bowl Championship Series," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(3), pages 1-13, July.
    5. Sebastián Cea & Guillermo Durán & Mario Guajardo & Denis Sauré & Joaquín Siebert & Gonzalo Zamorano, 2020. "An analytics approach to the FIFA ranking procedure and the World Cup final draw," Annals of Operations Research, Springer, vol. 286(1), pages 119-146, March.
    6. West Brady T & Lamsal Madhur, 2008. "A New Application of Linear Modeling in the Prediction of College Football Bowl Outcomes and the Development of Team Ratings," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(3), pages 1-21, July.
    7. E. Woodrow Eckard, 2013. "Is the Bowl Championship Series a Cartel? Some Evidence," Journal of Sports Economics, , vol. 14(1), pages 3-22, February.
    8. Jason A. Winfree, 2021. "If You Don'T Like The Outcome, Change The Contest," Economic Inquiry, Western Economic Association International, vol. 59(1), pages 329-343, January.
    9. Carlos Serrano-Cinca & Yolanda Fuertes-Call鮠 & Bego uti鲲ez-Nieto & Beatriz Cuellar-Fernᮤez, 2014. "Path modelling to bankruptcy: causes and symptoms of the banking crisis," Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3798-3811, November.
    10. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    11. Baker, Rose D. & McHale, Ian G., 2013. "Forecasting exact scores in National Football League games," International Journal of Forecasting, Elsevier, vol. 29(1), pages 122-130.
    12. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
    13. Miles William W & Fowks Gary T & Coulter Lisa O, 2010. "AccuV College Football Ranking Model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-17, July.
    14. Yu Zhao & Shaopeng Wei & Yu Guo & Qing Yang & Xingyan Chen & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "Combining Intra-Risk and Contagion Risk for Enterprise Bankruptcy Prediction Using Graph Neural Networks," Papers 2202.03874, arXiv.org, revised Jul 2022.
    15. Jiang, Cuiqing & Lyu, Ximei & Yuan, Yufei & Wang, Zhao & Ding, Yong, 2022. "Mining semantic features in current reports for financial distress prediction: Empirical evidence from unlisted public firms in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1086-1099.
    16. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    17. Alexis Direr, 2013. "Are betting markets efficient? Evidence from European Football Championships," Applied Economics, Taylor & Francis Journals, vol. 45(3), pages 343-356, January.
    18. Schlembach, Christoph & Schmidt, Sascha L. & Schreyer, Dominik & Wunderlich, Linus, 2022. "Forecasting the Olympic medal distribution – A socioeconomic machine learning model," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    19. Jason A. Winfree, 2020. "Rivalries, Bowl Eligibility, and Scheduling Effects in College Football," Journal of Sports Economics, , vol. 21(5), pages 477-492, June.
    20. María Escribano-Navas & German Gemar, 2021. "Gender and Bankruptcy: A Hotel Survival Econometric Analysis," Sustainability, MDPI, vol. 13(12), pages 1-13, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:61:y:2014:i:1:p:17-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.