IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v28y2012i2p543-552.html
   My bibliography  Save this article

A comparative analysis of data mining methods in predicting NCAA bowl outcomes

Author

Listed:
  • Delen, Dursun
  • Cogdell, Douglas
  • Kasap, Nihat

Abstract

Predicting the outcome of a college football game is an interesting and challenging problem. Most previous studies have concentrated on ranking the bowl-eligible teams according to their perceived strengths, and using these rankings to predict the winner of a specific bowl game. In this study, using eight years of data and three popular data mining techniques (namely artificial neural networks, decision trees and support vector machines), we have developed both classification- and regression-type models in order to assess the predictive abilities of different methodologies (classification versus regression-based classification) and techniques. In the end, the results showed that the classification-type models predict the game outcomes better than regression-based classification models, and of the three classification techniques, decision trees produced the best results, with better than an 85% prediction accuracy on the 10-fold holdout sample. The sensitivity analysis on trained models revealed that the non-conference team winning percentage and average margin of victory are the two most important variables among the 28 that were used in this study.

Suggested Citation

  • Delen, Dursun & Cogdell, Douglas & Kasap, Nihat, 2012. "A comparative analysis of data mining methods in predicting NCAA bowl outcomes," International Journal of Forecasting, Elsevier, vol. 28(2), pages 543-552.
  • Handle: RePEc:eee:intfor:v:28:y:2012:i:2:p:543-552
    DOI: 10.1016/j.ijforecast.2011.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207011000914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2011.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Itay Fainmesser & Chaim Fershtman & Neil Gandal, 2009. "A Consistent Weighted Ranking Scheme With an Application to NCAA College Football Rankings," Journal of Sports Economics, , vol. 10(6), pages 582-600, December.
    2. David L. Olson & Dursun Delen, 2008. "Advanced Data Mining Techniques," Springer Books, Springer, number 978-3-540-76917-0, June.
    3. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    4. West Brady T & Lamsal Madhur, 2008. "A New Application of Linear Modeling in the Prediction of College Football Bowl Outcomes and the Development of Team Ratings," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(3), pages 1-21, July.
    5. Song, ChiUng & Boulier, Bryan L. & Stekler, Herman O., 2007. "The comparative accuracy of judgmental and model forecasts of American football games," International Journal of Forecasting, Elsevier, vol. 23(3), pages 405-413.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Jay Coleman, 2014. "Minimum violations and predictive meta‐rankings for college football," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(1), pages 17-33, February.
    2. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
    3. Wigness Maggie B & Williams Chadd C & Rowell Michael J, 2010. "A New Iterative Method for Ranking College Football Teams," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(2), pages 1-15, April.
    4. Hubáček, Ondřej & Šourek, Gustav & Železný, Filip, 2019. "Exploiting sports-betting market using machine learning," International Journal of Forecasting, Elsevier, vol. 35(2), pages 783-796.
    5. Jason A. Winfree, 2021. "If You Don'T Like The Outcome, Change The Contest," Economic Inquiry, Western Economic Association International, vol. 59(1), pages 329-343, January.
    6. Vangelis Marinakis & Themistoklis Koutsellis & Alexandros Nikas & Haris Doukas, 2021. "AI and Data Democratisation for Intelligent Energy Management," Energies, MDPI, vol. 14(14), pages 1-14, July.
    7. Mark Gilchrist & Deana Lehmann Mooers & Glenn Skrubbeltrang & Francine Vachon, 2012. "Knowledge Discovery in Databases for Competitive Advantage," Journal of Management and Strategy, Journal of Management and Strategy, Sciedu Press, vol. 3(2), pages 2-15, April.
    8. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    9. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    10. Marina Johnson & Abdullah Albizri & Serhat Simsek, 2022. "Artificial intelligence in healthcare operations to enhance treatment outcomes: a framework to predict lung cancer prognosis," Annals of Operations Research, Springer, vol. 308(1), pages 275-305, January.
    11. Baker, Rose D. & McHale, Ian G., 2013. "Forecasting exact scores in National Football League games," International Journal of Forecasting, Elsevier, vol. 29(1), pages 122-130.
    12. Mehri, Ali & Darooneh, Amir H. & Shariati, Ashrafalsadat, 2012. "The complex networks approach for authorship attribution of books," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2429-2437.
    13. Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Klaudiusz Borkowski & Elżbieta Jasińska, 2020. "The Application of Hierarchical Clustering to Power Quality Measurements in an Electrical Power Network with Distributed Generation," Energies, MDPI, vol. 13(9), pages 1-19, May.
    14. Coussement, Kristof & De Bock, Koen W., 2013. "Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning," Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
    15. Karl Andrew T., 2012. "The Sensitivity of College Football Rankings to Several Modeling Choices," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-44, October.
    16. Alexis Direr, 2013. "Are betting markets efficient? Evidence from European Football Championships," Applied Economics, Taylor & Francis Journals, vol. 45(3), pages 343-356, January.
    17. Beni Rohrbach & Sharolyn Anderson & Patrick Laube, 2016. "The effects of sample size on data quality in participatory mapping of past land use," Environment and Planning B, , vol. 43(4), pages 681-697, July.
    18. Schlembach, Christoph & Schmidt, Sascha L. & Schreyer, Dominik & Wunderlich, Linus, 2022. "Forecasting the Olympic medal distribution – A socioeconomic machine learning model," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    19. Jason A. Winfree, 2020. "Rivalries, Bowl Eligibility, and Scheduling Effects in College Football," Journal of Sports Economics, , vol. 21(5), pages 477-492, June.
    20. Wunderlich, Fabian & Memmert, Daniel, 2020. "Are betting returns a useful measure of accuracy in (sports) forecasting?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 713-722.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:28:y:2012:i:2:p:543-552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.