IDEAS home Printed from https://ideas.repec.org/r/eee/econom/v140y2007i2p884-918.html
   My bibliography  Save this item

Properties of optimal forecasts under asymmetric loss and nonlinearity

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
  2. Stan Hurn & Jing Tian & Lina Xu, 2021. "Assessing the Informational Content of Official Australian Bureau of Meteorology Forecasts of Wind Speed," The Economic Record, The Economic Society of Australia, vol. 97(319), pages 525-547, December.
  3. Capistrán, Carlos & López-Moctezuma, Gabriel, 2014. "Forecast revisions of Mexican inflation and GDP growth," International Journal of Forecasting, Elsevier, vol. 30(2), pages 177-191.
  4. Sinclair, Tara M. & Gamber, Edward N. & Stekler, Herman & Reid, Elizabeth, 2012. "Jointly evaluating the Federal Reserve’s forecasts of GDP growth and inflation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 309-314.
  5. Shea, Paul, 2015. "Red herrings and revelations: does learning about a new variable worsen forecasts?," Economic Modelling, Elsevier, vol. 49(C), pages 395-406.
  6. Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," DEM Working Papers Series 145, University of Pavia, Department of Economics and Management.
  7. Christian Pierdzioch & Jan-Christoph Rülke & Peter Tillmann, 2013. "Using forecasts to uncover the loss function of FOMC members," MAGKS Papers on Economics 201302, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
  8. Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2018. "Quantile forecast combination using stochastic dominance," Empirical Economics, Springer, vol. 55(4), pages 1717-1755, December.
  9. Lui, Silvia & Mitchell, James & Weale, Martin, 2011. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1128-1146, October.
  10. Pierdzioch, Christian & Rülke, Jan-Christoph, 2013. "Do inflation targets anchor inflation expectations?," Economic Modelling, Elsevier, vol. 35(C), pages 214-223.
  11. Buse, Rebekka & Schienle, Melanie, 2019. "Measuring connectedness of euro area sovereign risk," International Journal of Forecasting, Elsevier, vol. 35(1), pages 25-44.
  12. Lima, Luiz Renato & Meng, Fanning & Godeiro, Lucas, 2020. "Quantile forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1149-1162.
  13. Bauer, Christian & Neuenkirch, Matthias, 2017. "Forecast uncertainty and the Taylor rule," Journal of International Money and Finance, Elsevier, vol. 77(C), pages 99-116.
  14. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
  15. Pablo Pincheira B. & Nicolás Fernández, 2011. "Jaque Mate a las Proyecciones de Consenso," Working Papers Central Bank of Chile 630, Central Bank of Chile.
  16. Nazaria Solferino & Robert Waldmann, 2010. "Predicting the signs of forecast errors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 476-485.
  17. Demetrescu, Matei & Hacıoğlu Hoke, Sinem, 2019. "Predictive regressions under asymmetric loss: Factor augmentation and model selection," International Journal of Forecasting, Elsevier, vol. 35(1), pages 80-99.
  18. Jens J. Krüger, 2014. "A multivariate evaluation of German output growth and inflation forecasts," Economics Bulletin, AccessEcon, vol. 34(3), pages 1410-1418.
  19. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
  20. Coroneo, Laura & Iacone, Fabrizio & Paccagnini, Alessia & Santos Monteiro, Paulo, 2023. "Testing the predictive accuracy of COVID-19 forecasts," International Journal of Forecasting, Elsevier, vol. 39(2), pages 606-622.
  21. Cui, Qiurong & Xu, Yuqing & Zhang, Zhengjun & Chan, Vincent, 2021. "Max-linear regression models with regularization," Journal of Econometrics, Elsevier, vol. 222(1), pages 579-600.
  22. William A. Branch, 2014. "Nowcasting and the Taylor Rule," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(5), pages 1035-1055, August.
  23. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
  24. Goodwin, Thomas & Tian, Jing, 2017. "A state space approach to evaluate multi-horizon forecasts," Working Papers 2017-15, University of Tasmania, Tasmanian School of Business and Economics.
  25. Sun, Yuying & Wang, Shouyang & Zhang, Xun, 2018. "How efficient are China's macroeconomic forecasts? Evidences from a new forecasting evaluation approach," Economic Modelling, Elsevier, vol. 68(C), pages 506-513.
  26. Andrew Patton & Allan Timmermann, 2012. "Forecast Rationality Tests Based on Multi-Horizon Bounds," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 1-17.
  27. Fritsche, Ulrich & Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Forecasting the Brazilian real and the Mexican peso: Asymmetric loss, forecast rationality, and forecaster herding," International Journal of Forecasting, Elsevier, vol. 31(1), pages 130-139.
  28. Jalles, João Tovar, 2017. "On the rationality and efficiency of inflation forecasts: Evidence from advanced and emerging market economies," Research in International Business and Finance, Elsevier, vol. 40(C), pages 175-189.
  29. Alp, Tansel & Demetrescu, Matei, 2010. "Joint forecasts of Dow Jones stocks under general multivariate loss function," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2360-2371, November.
  30. Joanna Bruzda, 2020. "Multistep quantile forecasts for supply chain and logistics operations: bootstrapping, the GARCH model and quantile regression based approaches," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 309-336, March.
  31. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
  32. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
  33. Kostas Mouratidis & Dimitris Kenourgios & Aris Samitas, 2010. "Evaluating currency crisis:A multivariate Markov switching approach," Working Papers 2010018, The University of Sheffield, Department of Economics, revised Oct 2010.
  34. Carlos Capistrán & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2‐3), pages 365-396, March.
  35. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
  36. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
  37. Conrad, Christian, 2017. "When does information on forecast variance improve the performance of a combined forecast?," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168200, Verein für Socialpolitik / German Economic Association.
  38. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
  39. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2009. "Expert opinion versus expertise in forecasting," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 334-346, August.
  40. Yam Wing Siu, 2020. "Impact of Expected Shortfall Approach on Capital Requirement Under Basel," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-34, January.
  41. Florian Peters & Simas Kucinskas, 2018. "Measuring Biases in Expectation Formation," Tinbergen Institute Discussion Papers 18-058/IV, Tinbergen Institute.
  42. Andrea Betancor & Pablo Pincheira, 2008. "Forecasting Inflation Forecast Errors," Working Papers Central Bank of Chile 477, Central Bank of Chile.
  43. Xinglin Yang & Peng Wang, 2018. "VIX futures pricing with conditional skewness," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1126-1151, September.
  44. Demetrescu, Matei & Golosnoy, Vasyl & Titova, Anna, 2020. "Bias corrections for exponentially transformed forecasts: Are they worth the effort?," International Journal of Forecasting, Elsevier, vol. 36(3), pages 761-780.
  45. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
  46. Brownlees, Christian T. & Gallo, Giampiero M., 2011. "Shrinkage estimation of semiparametric multiplicative error models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 365-378, April.
  47. João Henrique Gonçalves Mazzeu & Esther Ruiz & Helena Veiga, 2018. "Uncertainty And Density Forecasts Of Arma Models: Comparison Of Asymptotic, Bayesian, And Bootstrap Procedures," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 388-419, April.
  48. Barbara Rossi, 2011. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 25-29, August.
  49. Maurizio Bovi, 2020. "A time-varying expectations formation mechanism," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(1), pages 69-103, April.
  50. Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
  51. Tian, Jing & Goodwin, Thomas, 2018. "An unobserved component modeling approach to evaluate multi-horizon forecasts," Working Papers 2018-04, University of Tasmania, Tasmanian School of Business and Economics.
  52. repec:ags:aaea22:335690 is not listed on IDEAS
  53. Lillestøl, Jostein & Sinding-Larsen, Richard, 2015. "Best estimate reporting with asymmetric loss," Discussion Papers 2015/7, Norwegian School of Economics, Department of Business and Management Science.
  54. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
  55. Bourmpoula, Evangelia. & Wieser, Christina., 2014. "An accuracy assessment of the global employment trends' unemployment rate forecasts," ILO Working Papers 994888903402676, International Labour Organization.
  56. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  57. Chang, Chia-Lin & Franses, Philip Hans & McAleer, Michael, 2011. "How accurate are government forecasts of economic fundamentals? The case of Taiwan," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1066-1075, October.
  58. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, New Economic School (NES).
  59. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
  60. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
  61. Federico Bassetti & Roberto Casarin & Marco Del Negro, 2022. "A Bayesian Approach to Inference on Probabilistic Surveys," Staff Reports 1025, Federal Reserve Bank of New York.
  62. Bourmpoula, Evangelia. & Wieser, Christina., 2014. "An accuracy assessment of the global employment trends' unemployment rate forecasts," Global Employment Trends Reports 994888903402676, International Labour Office, Economic and Labour Market Analysis Department.
  63. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
  64. Ildeberta Abreu, 2011. "International organisations’ vs. private analysts’ forecasts: an evaluation," Working Papers w201120, Banco de Portugal, Economics and Research Department.
  65. Sizova, Natalia, 2011. "Integrated variance forecasting: Model based vs. reduced form," Journal of Econometrics, Elsevier, vol. 162(2), pages 294-311, June.
  66. Qiu, Yajie & Deschamps, Bruno & Liu, Xiaoquan, 2024. "Uncertainty and macroeconomic forecasts: Evidence from survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 224(C), pages 463-480.
  67. Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
  68. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
  69. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
  70. Luetkepohl Helmut & Xu Fang, 2011. "Forecasting Annual Inflation with Seasonal Monthly Data: Using Levels versus Logs of the Underlying Price Index," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-23, February.
  71. Michael W. McCracken & Giorgio Valente, 2018. "Asymptotic Inference for Performance Fees and the Predictability of Asset Returns," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 426-437, July.
  72. Pablo Pincheira, 2010. "A Real Time Evaluation of the Central Bank of Chile GDP Growth Forecasts," Money Affairs, CEMLA, vol. 0(1), pages 37-73, January-J.
  73. Thiago De Oliveira Souza, 2011. "Forecasting Investment-Grade Credit-Spreads. A Regularized Approach," Working Papers ECARES ECARES 2011-037, ULB -- Universite Libre de Bruxelles.
  74. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
  75. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
  76. repec:ilo:ilowps:488890 is not listed on IDEAS
  77. Kexin Ding & Ani L. Katchova, 2024. "Testing the optimality of USDA's WASDE forecasts under unknown loss," Agribusiness, John Wiley & Sons, Ltd., vol. 40(4), pages 846-865, October.
  78. Olga Isengildina‐Massa & Berna Karali & Todd H. Kuethe & Ani L. Katchova, 2021. "Joint Evaluation of the System of USDA's Farm Income Forecasts," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(3), pages 1140-1160, September.
  79. Donayre, Luiggi & Panovska, Irina, 2016. "Nonlinearities in the U.S. wage Phillips curve," Journal of Macroeconomics, Elsevier, vol. 48(C), pages 19-43.
  80. Capistrán Carlos, 2007. "Optimality Tests for Multi-Horizon Forecasts," Working Papers 2007-14, Banco de México.
  81. Henri Karttunen, 2020. "An autoregressive model based on the generalized hyperbolic distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 787-816, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.