My bibliography
Save this item
An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- J. Eduardo Vera-Valdés, 2021. "Nonfractional Long-Range Dependence: Long Memory, Antipersistence, and Aggregation," Econometrics, MDPI, vol. 9(4), pages 1-18, October.
- Florian Heinen & Philipp Sibbertsen & Robinson Kruse, 2009.
"Forecasting long memory time series under a break in persistence,"
CREATES Research Papers
2009-53, Department of Economics and Business Economics, Aarhus University.
- Heinen, Florian & Sibbertsen, Philipp & Kruse, Robinson, 2009. "Forecasting long memory time series under a break in persistence," Hannover Economic Papers (HEP) dp-433, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Liu, Zhengli & Shang, Pengjian, 2018. "Generalized information entropy analysis of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1170-1185.
- Mohamed Boutahar & Gilles Dufrénot & Anne Péguin-Feissolle, 2008.
"A Simple Fractionally Integrated Model with a Time-varying Long Memory Parameter d t,"
Computational Economics, Springer;Society for Computational Economics, vol. 31(3), pages 225-241, April.
- Mohamed Boutahar & Gilles Dufrénot & Anne Peguin-Feissolle, 2008. "A simple fractionally integrated model with a time-varying long memory parameter dt," Post-Print halshs-00390136, HAL.
- Axel Groß‐KlußMann & Nikolaus Hautsch, 2013.
"Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
- Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "Predicting bid-ask spreads using long memory autoregressive conditional poisson models," SFB 649 Discussion Papers 2011-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- repec:hum:wpaper:sfb649dp2007-027 is not listed on IDEAS
- Rangan Gupta & Alain Kabundi & Emmanuel Ziramba, 2010.
"The Effect Of Defense Spending On Us Output: A Factor Augmented Vector Autoregression (Favar) Approach,"
Defence and Peace Economics, Taylor & Francis Journals, vol. 21(2), pages 135-147.
- Rangan Gupta & Alain Kabundi & Emmanuel Ziramba, 2009. "The Effect Of Defense Spending On Us Output: A Factor Augmented Vector Autoregression (Favar) Approach," Working Papers 200911, University of Pretoria, Department of Economics.
- Shaher Al-Gounmeein Remal & Ismail Mohd Tahir, 2021. "Modelling and forecasting monthly Brent crude oil prices: a long memory and volatility approach," Statistics in Transition New Series, Statistics Poland, vol. 22(1), pages 29-54, March.
- Berna Kirkulak Uludag & Zorikto Lkhamazhapov, 2014. "Long memory and structural breaks in the returns and volatility of gold: evidence from Turkey," Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3777-3787, November.
- Anne Peguin-Feissolle & Gilles Dufrénot & Dominique Guegan, 2006.
"Changing-regime volatility : A fractionally integrated SETAR model,"
Working Papers
halshs-00410540, HAL.
- Gilles Dufrenot & Dominique Guegan & Anne Peguin-Feissolle, 2008. "Changing-regime volatility: A fractionally integrated SETAR model," Post-Print halshs-00185369, HAL.
- Gilles Dufrenot & Dominique Guegan & Anne Peguin-Feissolle, 2008. "Changing-regime volatility: A fractionally integrated SETAR model," PSE-Ecole d'économie de Paris (Postprint) halshs-00185369, HAL.
- Gilles Dufrenot & Dominique Guegan & Anne Peguin-Feissolle, 2008. "Changing-regime volatility: A fractionally integrated SETAR model," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00185369, HAL.
- Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014.
"Modeling and predicting the CBOE market volatility index,"
Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
- Marcelo Fernandes & Marcelo Cunha Medeiros & MArcelo Scharth, 2007. "Modeling and predicting the CBOE market volatility index," Textos para discussão 548, Department of Economics PUC-Rio (Brazil).
- Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2013. "Modeling and predicting the CBOE market volatility index," Textos para discussão 342, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Liu, Zhengli & Shang, Pengjian & Wang, Yuanyuan, 2019. "Multifractal weighted permutation analysis based on Rényi entropy for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
- Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
- Choi, Kyongwook & Zivot, Eric, 2007. "Long memory and structural changes in the forward discount: An empirical investigation," Journal of International Money and Finance, Elsevier, vol. 26(3), pages 342-363, April.
- Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
- Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen Miller, 2013.
"Forecasting Nevada gross gaming revenue and taxable sales using coincident and leading employment indexes,"
Empirical Economics, Springer, vol. 44(2), pages 387-417, April.
- Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2010. "Forecasting Nevada Gross Gaming Revenue and Taxable Sales Using Coincident and Leading Employment Indexes," Working Papers 201018, University of Pretoria, Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen Miller, 2010. "Forecasting Nevada Gross Gaming Revenue and Taxable Sales Using Coincident and Leading Employment Indexes," Working Papers 15-01, Eastern Mediterranean University, Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2010. "Forecasting Nevada Gross Gaming Revenue and Taxable Sales Using Coincident and Leading Employment Indexes," Working papers 2010-21, University of Connecticut, Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2011. "Forecasting Nevada Gross Gaming Revenue and Taxable Sales Using Coincident and Leading Employment Indexes," Working Papers 1103, University of Nevada, Las Vegas , Department of Economics.
- Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
- Härdle, Wolfgang Karl & Mungo, Julius, 2007. "Long memory persistence in the factor of Implied volatility dynamics," SFB 649 Discussion Papers 2007-027, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023.
"A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting,"
Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2020. "Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Working Papers 202056, University of Pretoria, Department of Economics.
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2020. "Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Working papers 2020-10, University of Connecticut, Department of Economics.
- Bhardwaj, Geetesh & Swanson, Norman R., 2006.
"An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
- Geetesh Bhardwaj & Norman Swanson, 2004. "An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series," Departmental Working Papers 200422, Rutgers University, Department of Economics.
- Slim Chaouachi & Zied Ftiti & Frederic Teulon, 2014. "Explaining the Tunisian Real Exchange: Long Memory versus Structural Breaks," Working Papers 2014-147, Department of Research, Ipag Business School.
- Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014.
"Using large data sets to forecast sectoral employment,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working Papers 201101, University of Pretoria, Department of Economics.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working papers 2011-02, University of Connecticut, Department of Economics, revised Aug 2012.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working Papers 1106, University of Nevada, Las Vegas , Department of Economics.
- Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014.
"Time Series Models for Business and Economic Forecasting,"
Cambridge Books,
Cambridge University Press, number 9780521520911, September.
- Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521817707, September.
- Tan, Zhengxun & Liu, Juan & Chen, Juanjuan, 2021. "Detecting stock market turning points using wavelet leaders method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
- Campos, I. & Cortazar, G. & Reyes, T., 2017. "Modeling and predicting oil VIX: Internet search volume versus traditional mariables," Energy Economics, Elsevier, vol. 66(C), pages 194-204.
- Yuliya Lovcha & Alejandro Perez-Laborda & Luis Gil-Alana, 2018.
"On the invertibility of seasonally adjusted series,"
Computational Statistics, Springer, vol. 33(1), pages 443-465, March.
- Gil-Alana, Luis & Lovcha, Yuliya & Pérez Laborda, Àlex, 2016. "On the invertibility of seasonally adjusted series," Working Papers 2072/261539, Universitat Rovira i Virgili, Department of Economics.
- Jiang, Jun & Shang, Pengjian & Zhang, Zuoquan & Li, Xuemei, 2018. "The multi-scale high-order statistical moments of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 474-488.
- Rangan Gupta & Faaiqa Hartley, 2013.
"The Role of Asset Prices in Forecasting Inflation and Output in South Africa,"
Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 12(3), pages 239-291, December.
- Rangan Gupta & Faaiqa Hartley, 2011. "The Role of Asset Prices in Forecasting Inflation and Output in South Africa," Working Papers 201115, University of Pretoria, Department of Economics.
- Abdul Aziz Karia & Imbarine Bujang & Ismail Ahmad, 2013. "Fractionally integrated ARMA for crude palm oil prices prediction: case of potentially overdifference," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2735-2748, December.
- Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Nicholas Kilimani & Amandine Nakumuryango & Siobhan Redford, 2014.
"Predicting BRICS stock returns using ARFIMA models,"
Applied Financial Economics, Taylor & Francis Journals, vol. 24(17), pages 1159-1166, September.
- Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Nicholas Kilimani & Amandine Nakumuryango & Siobhan Redford, 2012. "Predicting BRICS Stock Returns Using ARFIMA Models," Working Papers 201235, University of Pretoria, Department of Economics.
- Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012.
"Long memory and structural breaks in modeling the return and volatility dynamics of precious metals,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
- Mohamed El Hedi Arouri & Shawkat Hammoudeh & Amine Lahiani & Duc Khuong Nguyen, 2013. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," Working Papers hal-00798033, HAL.
- Lahiani, A. & Scaillet, O., 2009.
"Testing for threshold effect in ARFIMA models: Application to US unemployment rate data,"
International Journal of Forecasting, Elsevier, vol. 25(2), pages 418-428.
- Amine LAHIANI & Olivier SCAILLET, 2008. "Testing for threshold effect in ARFIMA models: Application to US unemployment rate data," Swiss Finance Institute Research Paper Series 08-42, Swiss Finance Institute.
- repec:hum:wpaper:sfb649dp2011-044 is not listed on IDEAS
- Ross Doppelt & Keith O'Hara, 2018. "Bayesian Estimation of Fractionally Integrated Vector Autoregressions and an Application to Identified Technology Shocks," 2018 Meeting Papers 1212, Society for Economic Dynamics.
- repec:ctc:serie1:def10 is not listed on IDEAS
- J. Eduardo Vera‐Valdés, 2020.
"On long memory origins and forecast horizons,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 811-826, August.
- J. Eduardo Vera-Vald'es, 2017. "On Long Memory Origins and Forecast Horizons," Papers 1712.08057, arXiv.org.
- Baillie, Richard T. & Kongcharoen, Chaleampong & Kapetanios, George, 2012. "Prediction from ARFIMA models: Comparisons between MLE and semiparametric estimation procedures," International Journal of Forecasting, Elsevier, vol. 28(1), pages 46-53.
- Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011.
"Forecasting the US real house price index: Structural and non-structural models with and without fundamentals,"
Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working papers 2009-42, University of Connecticut, Department of Economics.
- Rangan Gupta & Alan Kabundi & Stephen M. Miller, 2010. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working Papers 1001, University of Nevada, Las Vegas , Department of Economics.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working Papers 200927, University of Pretoria, Department of Economics.
- Chuxuan Xiao & Winifred Huang & David P. Newton, 2024. "Predicting expected idiosyncratic volatility: Empirical evidence from ARFIMA, HAR, and EGARCH models," Review of Quantitative Finance and Accounting, Springer, vol. 63(3), pages 979-1006, October.
- Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
- A.M.M. Shahiduzzaman Quoreshi, 2017.
"A bivariate integer-valued long-memory model for high-frequency financial count data,"
Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(3), pages 1080-1089, February.
- Quoreshi, A.M.M. Shahiduzzaman, 2014. "Bivariate Integer-Valued Long Memory Model for High Frequency Financial Count Data," Working Papers 2014/03, Blekinge Institute of Technology, Department of Industrial Economics.
- A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Naushad Mamode Khan, 2019. "Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data—Under Conditional Heteroskedasticity Framework," JRFM, MDPI, vol. 12(2), pages 1-13, April.
- Monticini, Andrea & Ravazzolo, Francesco, 2014.
"Forecasting the intraday market price of money,"
Journal of Empirical Finance, Elsevier, vol. 29(C), pages 304-315.
- Andrea Monticini & Francesco Ravazzolo, 2011. "Forecasting the intraday market price of money," Working Paper 2011/06, Norges Bank.
- Andrea Monticini & Francesco Ravazzolo, 2014. "Forecasting the intraday market price of money," DISCE - Working Papers del Dipartimento di Economia e Finanza def010, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
- Bejaoui, Azza & Mgadmi, Nidhal & Moussa, Wajdi, 2022. "On the relationship between Bitcoin and other assets during the outbreak of coronavirus: Evidence from fractional cointegration analysis," Resources Policy, Elsevier, vol. 77(C).
- Zevallos, Mauricio & Palma, Wilfredo, 2013. "Minimum distance estimation of ARFIMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 242-256.
- Quoreshi, Shahiduzzaman, 2006. "Time Series Modelling Of High Frequency Stock Transaction Data," Umeå Economic Studies 675, Umeå University, Department of Economics.
- A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Viroj Jienwatcharamongkhol, 2019. "Equity Market Contagion in Return Volatility during Euro Zone and Global Financial Crises: Evidence from FIMACH Model," JRFM, MDPI, vol. 12(2), pages 1-18, June.
- Kasai, Ndahiriwe & Naraidoo, Ruthira, 2011. "Evaluating the forecasting performance of linear and nonlinear monetary policy rules for South Africa," MPRA Paper 40699, University Library of Munich, Germany.
- Stefano Ferretti, 2023. "On the Modeling and Simulation of Portfolio Allocation Schemes: an Approach Based on Network Community Detection," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 969-1005, October.
- Aouad Hadjer, Soumia & Taouli, Mustapha Kamel & Benbouziane, Mohamed, 2012. "Modélisation du Comportement du Taux de Change du Dinar Algérien: Une Investigation Empirique par la Méthode ARFIMA [Modeling of the Algerian Dinar Exchange Rate: An empirical investigation using t," MPRA Paper 38605, University Library of Munich, Germany.
- Martha Cecilia García & Aura María Jalal & Luis Alfonso Garzón & Jorge Mario López, 2013. "Métodos para predecir índices Bursátiles," Revista Ecos de Economía, Universidad EAFIT, December.
- Adnan Kasman & Erdost Torun, 2007. "Long Memory in the Turkish Stock Market Return and Volatility," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 7(2), pages 13-27.
- Pietro Murialdo & Linda Ponta & Anna Carbone, 2020. "Long-Range Dependence in Financial Markets: a Moving Average Cluster Entropy Approach," Papers 2004.14736, arXiv.org.
- Quoreshi, Shahiduzzaman, 2006. "LongMemory, Count Data, Time Series Modelling for Financial Application," Umeå Economic Studies 673, Umeå University, Department of Economics.
- Boryana Bogdanova & Ivan Ivanov, 2016. "A wavelet-based approach to the analysis and modelling of financial time series exhibiting strong long-range dependence: the case of Southeast Europe," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 655-673, March.
- Daniel Borup & Bent Jesper Christensen & Yunus Emre Ergemen, 2019. "Assessing predictive accuracy in panel data models with long-range dependence," CREATES Research Papers 2019-04, Department of Economics and Business Economics, Aarhus University.
- Roger Bowden & Jennifer Zhu, 2010. "Multi-scale variation, path risk and long-term portfolio management," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 783-796.
- Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
- Rangan Gupta & Rudi Steinbach, 2010. "Forecasting Key Macroeconomic Variables of the South African Economy: A Small Open Economy New Keynesian DSGE-VAR Model," Working Papers 201019, University of Pretoria, Department of Economics.
- Christos Katris & Manolis G. Kavussanos, 2021. "Time series forecasting methods for the Baltic dry index," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1540-1565, December.
- Bisaglia, Luisa & Gerolimetto, Margherita, 2008. "Forecasting long memory time series when occasional breaks occur," Economics Letters, Elsevier, vol. 98(3), pages 253-258, March.
- Ding, Liang & Luo, Yi & Lin, Yan & Huang, Yirong, 2021. "Revisiting the relations between Hurst exponent and fractional differencing parameter for long memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
- Ana Lazcano & Pedro Javier Herrera & Manuel Monge, 2023. "A Combined Model Based on Recurrent Neural Networks and Graph Convolutional Networks for Financial Time Series Forecasting," Mathematics, MDPI, vol. 11(1), pages 1-21, January.
- Canarella, Giorgio & Miller, Stephen M., 2017. "Inflation targeting and inflation persistence: New evidence from fractional integration and cointegration," Journal of Economics and Business, Elsevier, vol. 92(C), pages 45-62.
- Kasman, Adnan & Kasman, Saadet & Torun, Erdost, 2009. "Dual long memory property in returns and volatility: Evidence from the CEE countries' stock markets," Emerging Markets Review, Elsevier, vol. 10(2), pages 122-139, June.