IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i1p224-d1022761.html
   My bibliography  Save this article

A Combined Model Based on Recurrent Neural Networks and Graph Convolutional Networks for Financial Time Series Forecasting

Author

Listed:
  • Ana Lazcano

    (Department of Computer Systems and Software Engineering, Universidad Nacional de Educación a Distancia (UNED), Juan del Rosal, 16, 28040 Madrid, Spain
    Faculty of Law, Business and Government, Universidad Francisco de Vitoria, 28223 Madrid, Spain)

  • Pedro Javier Herrera

    (Department of Computer Systems and Software Engineering, Universidad Nacional de Educación a Distancia (UNED), Juan del Rosal, 16, 28040 Madrid, Spain)

  • Manuel Monge

    (Faculty of Law, Business and Government, Universidad Francisco de Vitoria, 28223 Madrid, Spain)

Abstract

Accurate and real-time forecasting of the price of oil plays an important role in the world economy. Research interest in forecasting this type of time series has increased considerably in recent decades, since, due to the characteristics of the time series, it was a complicated task with inaccurate results. Concretely, deep learning models such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have appeared in this field with promising results compared to traditional approaches. To improve the performance of existing networks in time series forecasting, in this work two types of neural networks are brought together, combining the characteristics of a Graph Convolutional Network (GCN) and a Bidirectional Long Short-Term Memory (BiLSTM) network. This is a novel evolution that improves existing results in the literature and provides new possibilities in the analysis of time series. The results confirm a better performance of the combined BiLSTM-GCN approach compared to the BiLSTM and GCN models separately, as well as to the traditional models, with a lower error in all the error metrics used: the Root Mean Squared Error (RMSE), the Mean Squared Error (MSE), the Mean Absolute Percentage Error (MAPE) and the R-squared (R 2 ). These results represent a smaller difference between the result returned by the model and the real value and, therefore, a greater precision in the predictions of this model.

Suggested Citation

  • Ana Lazcano & Pedro Javier Herrera & Manuel Monge, 2023. "A Combined Model Based on Recurrent Neural Networks and Graph Convolutional Networks for Financial Time Series Forecasting," Mathematics, MDPI, vol. 11(1), pages 1-21, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:1:p:224-:d:1022761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dehghani, Hesam & Bogdanovic, Dejan, 2018. "Copper price estimation using bat algorithm," Resources Policy, Elsevier, vol. 55(C), pages 55-61.
    2. Mohammad Almasarweh & S. AL Wadi, 2018. "ARIMA Model in Predicting Banking Stock Market Data," Modern Applied Science, Canadian Center of Science and Education, vol. 12(11), pages 309-309, November.
    3. Tim Hill & Marcus O'Connor & William Remus, 1996. "Neural Network Models for Time Series Forecasts," Management Science, INFORMS, vol. 42(7), pages 1082-1092, July.
    4. Bernard Rosner & Robert J. Glynn & Mei-Ling T. Lee, 2006. "The Wilcoxon Signed Rank Test for Paired Comparisons of Clustered Data," Biometrics, The International Biometric Society, vol. 62(1), pages 185-192, March.
    5. A. Malliaris & Mary Malliaris, 2013. "Are oil, gold and the euro inter-related? Time series and neural network analysis," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 1-14, January.
    6. Manuel Monge & Ana Lazcano, 2022. "Commodity Prices after COVID-19: Persistence and Time Trends," Risks, MDPI, vol. 10(6), pages 1-20, June.
    7. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    8. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    9. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    10. Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yishun Liu & Chunhua Yang & Keke Huang & Weiping Liu, 2023. "A Multi-Factor Selection and Fusion Method through the CNN-LSTM Network for Dynamic Price Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    2. Qiong Yao & Chen Chen & Dan Song & Xiang Xu & Wensheng Li, 2023. "A Novel Finger Vein Verification Framework Based on Siamese Network and Gabor Residual Block," Mathematics, MDPI, vol. 11(14), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jianguo & Xu, Zhongtian, 2023. "A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices," Resources Policy, Elsevier, vol. 80(C).
    2. Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
    3. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    4. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    5. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    6. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    7. Leigh, W. & Paz, M. & Purvis, R., 2002. "An analysis of a hybrid neural network and pattern recognition technique for predicting short-term increases in the NYSE composite index," Omega, Elsevier, vol. 30(2), pages 69-76, April.
    8. Zhao, Jue & Hosseini, Shahab & Chen, Qinyang & Jahed Armaghani, Danial, 2023. "Super learner ensemble model: A novel approach for predicting monthly copper price in future," Resources Policy, Elsevier, vol. 85(PB).
    9. Fischer, Thomas & Krauss, Christopher & Treichel, Alex, 2018. "Machine learning for time series forecasting - a simulation study," FAU Discussion Papers in Economics 02/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    10. Yishun Liu & Chunhua Yang & Keke Huang & Weiping Liu, 2023. "A Multi-Factor Selection and Fusion Method through the CNN-LSTM Network for Dynamic Price Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    11. Liu, Weiping & Wang, Chengzhu & Li, Yonggang & Liu, Yishun & Huang, Keke, 2021. "Ensemble forecasting for product futures prices using variational mode decomposition and artificial neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Christos Katris & Manolis G. Kavussanos, 2021. "Time series forecasting methods for the Baltic dry index," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1540-1565, December.
    13. Fathi Abid & Bilel Kaffel, 2018. "The extent of virgin olive-oil prices’ distribution revealing the behavior of market speculators," Review of Quantitative Finance and Accounting, Springer, vol. 50(2), pages 561-590, February.
    14. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2020. "A random walk through the trees: Forecasting copper prices using decision learning methods," Resources Policy, Elsevier, vol. 69(C).
    15. Nabavi, Zohre & Mirzehi, Mohammad & Dehghani, Hesam, 2024. "Reliable novel hybrid extreme gradient boosting for forecasting copper prices using meta-heuristic algorithms: A thirty-year analysis," Resources Policy, Elsevier, vol. 90(C).
    16. Yifei Zhao & Jianhong Chen & Hideki Shimada & Takashi Sasaoka, 2023. "Non-Ferrous Metal Price Point and Interval Prediction Based on Variational Mode Decomposition and Optimized LSTM Network," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    17. Junhuan Zhang & Peter McBurney & Katarzyna Musial, 2018. "Convergence of trading strategies in continuous double auction markets with boundedly-rational networked traders," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 301-352, January.
    18. Liu, Kailei & Cheng, Jinhua & Yi, Jiahui, 2022. "Copper price forecasted by hybrid neural network with Bayesian Optimization and wavelet transform," Resources Policy, Elsevier, vol. 75(C).
    19. Duong Tran Anh & Thanh Duc Dang & Song Pham Van, 2019. "Improved Rainfall Prediction Using Combined Pre-Processing Methods and Feed-Forward Neural Networks," J, MDPI, vol. 2(1), pages 1-19, February.
    20. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:1:p:224-:d:1022761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.