IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v9y2021i4p39-d660147.html
   My bibliography  Save this article

Nonfractional Long-Range Dependence: Long Memory, Antipersistence, and Aggregation

Author

Listed:
  • J. Eduardo Vera-Valdés

    (Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, DK-9220 Aalborg, Denmark
    Center for Research in Econometric Analysis of Time Series (CREATES), Fuglesangs Allé 4, DK-8210 Aarhus, Denmark)

Abstract

This paper used cross-sectional aggregation as the inspiration for a model with long-range dependence that arises in actual data. One of the advantages of our model is that it is less brittle than fractionally integrated processes. In particular, we showed that the antipersistent phenomenon is not present for the cross-sectionally aggregated process. We proved that this has implications for estimators of long-range dependence in the frequency domain, which will be misspecified for nonfractional long-range-dependent processes with negative degrees of persistence. As an application, we showed how we can approximate a fractionally differenced process using theoretically-motivated cross-sectional aggregated long-range-dependent processes. An example with temperature data showed that our framework provides a better fit to the data than the fractional difference operator.

Suggested Citation

  • J. Eduardo Vera-Valdés, 2021. "Nonfractional Long-Range Dependence: Long Memory, Antipersistence, and Aggregation," Econometrics, MDPI, vol. 9(4), pages 1-18, October.
  • Handle: RePEc:gam:jecnmx:v:9:y:2021:i:4:p:39-:d:660147
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/9/4/39/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/9/4/39/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haldrup, Niels & Vera Valdés, J. Eduardo, 2017. "Long memory, fractional integration, and cross-sectional aggregation," Journal of Econometrics, Elsevier, vol. 199(1), pages 1-11.
    2. Andreas Noack Jensen & Morten Ørregaard Nielsen, 2014. "A Fast Fractional Difference Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 428-436, August.
    3. Phillips, Peter C.B., 2009. "Long memory and long run variation," Journal of Econometrics, Elsevier, vol. 151(2), pages 150-158, August.
    4. Uwe Hassler & Barbara Meller, 2014. "Detecting multiple breaks in long memory the case of U.S. inflation," Empirical Economics, Springer, vol. 46(2), pages 653-680, March.
    5. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    6. J. Eduardo Vera-Valdés, 2021. "Temperature Anomalies, Long Memory, and Aggregation," Econometrics, MDPI, vol. 9(1), pages 1-22, March.
    7. Georges Oppenheim & Marie‐Claude Viano, 2004. "Aggregation of random parameters Ornstein‐Uhlenbeck or AR processes: some convergence results," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 335-350, May.
    8. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    9. Daniela Osterrieder & Daniel Ventosa-Santaulària & J Eduardo Vera-Valdés, 2019. "The VIX, the Variance Premium, and Expected Returns," Journal of Financial Econometrics, Oxford University Press, vol. 17(4), pages 517-558.
    10. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    11. Linden, Mikael, 1999. "Time series properties of aggregated AR(1) processes with uniformly distributed coefficients," Economics Letters, Elsevier, vol. 64(1), pages 31-36, July.
    12. Terence C. Mills, 2007. "Time series modelling of two millennia of northern hemisphere temperatures: long memory or shifting trends?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 83-94, January.
    13. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gil-Alana, Luis Alberiko & Poza, Carlos, 2024. "Volatility persistence in metal prices," Resources Policy, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Eduardo Vera-Valdés, 2021. "Temperature Anomalies, Long Memory, and Aggregation," Econometrics, MDPI, vol. 9(1), pages 1-22, March.
    2. J. Eduardo Vera‐Valdés, 2020. "On long memory origins and forecast horizons," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 811-826, August.
    3. J. Eduardo Vera-Vald'es, 2018. "Nonfractional Memory: Filtering, Antipersistence, and Forecasting," Papers 1801.06677, arXiv.org.
    4. Haldrup, Niels & Vera Valdés, J. Eduardo, 2017. "Long memory, fractional integration, and cross-sectional aggregation," Journal of Econometrics, Elsevier, vol. 199(1), pages 1-11.
    5. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    6. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    7. Chevillon, Guillaume & Hecq, Alain & Laurent, Sébastien, 2018. "Generating univariate fractional integration within a large VAR(1)," Journal of Econometrics, Elsevier, vol. 204(1), pages 54-65.
    8. Florian Heinen & Philipp Sibbertsen & Robinson Kruse, 2009. "Forecasting long memory time series under a break in persistence," CREATES Research Papers 2009-53, Department of Economics and Business Economics, Aarhus University.
    9. Choi, Kyongwook & Zivot, Eric, 2007. "Long memory and structural changes in the forward discount: An empirical investigation," Journal of International Money and Finance, Elsevier, vol. 26(3), pages 342-363, April.
    10. A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Naushad Mamode Khan, 2019. "Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data—Under Conditional Heteroskedasticity Framework," JRFM, MDPI, vol. 12(2), pages 1-13, April.
    11. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    12. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    13. Gilles Dufrenot & Dominique Guegan & Anne Peguin-Feissolle, 2008. "Changing-regime volatility: a fractionally integrated SETAR model," Applied Financial Economics, Taylor & Francis Journals, vol. 18(7), pages 519-526.
    14. Contreras-Reyes, Javier E., 2022. "Rényi entropy and divergence for VARFIMA processes based on characteristic and impulse response functions," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Gianluca Cubadda & Alain Hecq & Antonio Riccardo, 2018. "Forecasting Realized Volatility Measures with Multivariate and Univariate Models: The Case of The US Banking Sector," CEIS Research Paper 445, Tor Vergata University, CEIS, revised 30 Oct 2018.
    16. Guglielmo Maria Caporale & Luis A. Gil-Alana & Manuel Monge, 2019. "Energy Consumption in the GCC Countries: Evidence on Persistence," CESifo Working Paper Series 7470, CESifo.
    17. Quoreshi, Shahiduzzaman, 2006. "LongMemory, Count Data, Time Series Modelling for Financial Application," Umeå Economic Studies 673, Umeå University, Department of Economics.
    18. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    19. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    20. van Mierlo, J.G.A., 2001. "Over de verhouding tussen overheid, marktwerking en privatisering. Een economische meta-analyse," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:9:y:2021:i:4:p:39-:d:660147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.