IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00798033.html
   My bibliography  Save this paper

Long memory and structural breaks in modeling the return and volatility dynamics of precious metals

Author

Listed:
  • Mohamed El Hedi Arouri

    (CRCGM - Centre de Recherche Clermontois en Gestion et Management - UdA - Université d'Auvergne - Clermont-Ferrand I - ESC Clermont-Ferrand - École Supérieure de Commerce (ESC) - Clermont-Ferrand)

  • Shawkat Hammoudeh

    (Drexel University, CERAG - Centre d'études et de recherches appliquées à la gestion - UPMF - Université Pierre Mendès France - Grenoble 2 - CNRS - Centre National de la Recherche Scientifique)

  • Amine Lahiani

    (LEO - Laboratoire d'économie d'Orleans [2008-2011] - UO - Université d'Orléans - CNRS - Centre National de la Recherche Scientifique)

  • Duc Khuong Nguyen

    (CERAG - Centre d'études et de recherches appliquées à la gestion - UPMF - Université Pierre Mendès France - Grenoble 2 - CNRS - Centre National de la Recherche Scientifique, ISC Paris - Institut Supérieur du Commerce de Paris)

Abstract

We investigate the potential of structural changes and long memory (LM) properties in returns and volatility of the four major precious metal commodities traded on the COMEX markets (gold, silver, platinum and palladium). Broadly speaking, a random variable is said to exhibit long memory behavior if its autocorrelation function is not integrable, while structural changes can induce sudden and significant shifts in the time-series behavior of that variable. The results from implementing several parametric and semiparametric methods indicate strong evidence of long range dependence in the daily conditional return and volatility processes for the precious metals. Moreover, for most of the precious metals considered, this dual long memory is found to be adequately captured by an ARFIMA-FIGARCH model, which also provides better out-of-sample forecast accuracy than several popular volatility models. Finally, evidence shows that conditional volatility of precious metals is better explained by long memory than by structural breaks.

Suggested Citation

  • Mohamed El Hedi Arouri & Shawkat Hammoudeh & Amine Lahiani & Duc Khuong Nguyen, 2013. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," Working Papers hal-00798033, HAL.
  • Handle: RePEc:hal:wpaper:hal-00798033
    Note: View the original document on HAL open archive server: https://hal.science/hal-00798033
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00798033/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    3. Browne, Frank & Cronin, David, 2010. "Commodity prices, money and inflation," Journal of Economics and Business, Elsevier, vol. 62(4), pages 331-345, July.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Hammoudeh, Shawkat M. & Yuan, Yuan & McAleer, Michael & Thompson, Mark A., 2010. "Precious metals-exchange rate volatility transmissions and hedging strategies," International Review of Economics & Finance, Elsevier, vol. 19(4), pages 633-647, October.
    6. Lee, Hsien-Yi & Wu, Hsing-Chi & Wang, Yung-Jang, 2007. "Contagion effect in financial markets after the South-East Asia Tsunami," Research in International Business and Finance, Elsevier, vol. 21(2), pages 281-296, June.
    7. Lahiani, A. & Scaillet, O., 2009. "Testing for threshold effect in ARFIMA models: Application to US unemployment rate data," International Journal of Forecasting, Elsevier, vol. 25(2), pages 418-428.
    8. Rockerbie, Duane W., 1999. "Gold prices and gold production: Evidence for South Africa," Resources Policy, Elsevier, vol. 25(2), pages 69-76, June.
    9. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    10. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    11. Jorge A. Chan-Lau & Donald J. Mathieson & James Y. Yao, 2004. "Extreme Contagion in Equity Markets," IMF Staff Papers, Palgrave Macmillan, vol. 51(2), pages 1-8.
    12. Hedi Arouri, Mohamed El & Khuong Nguyen, Duc, 2010. "Oil prices, stock markets and portfolio investment: Evidence from sector analysis in Europe over the last decade," Energy Policy, Elsevier, vol. 38(8), pages 4528-4539, August.
    13. Sjaastad, Larry A. & Scacciavillani, Fabio, 1996. "The price of gold and the exchange rate," Journal of International Money and Finance, Elsevier, vol. 15(6), pages 879-897, December.
    14. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    15. Markwat, Thijs & Kole, Erik & van Dijk, Dick, 2009. "Contagion as a domino effect in global stock markets," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 1996-2012, November.
    16. Hammoudeh, Shawkat & Malik, Farooq & McAleer, Michael, 2011. "Risk management of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(4), pages 435-441.
    17. Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010. "Long memory versus structural breaks in modeling and forecasting realized volatility," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
    18. Radetzki, Marian, 1989. "Precious metals : The fundamental determinants of their price behaviour," Resources Policy, Elsevier, vol. 15(3), pages 194-208, September.
    19. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    20. Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
    21. Baffes, John, 2007. "Oil spills on other commodities," Resources Policy, Elsevier, vol. 32(3), pages 126-134, September.
    22. CHIA-LIN CHANG & MICHAEL McALEER & ROENGCHAI TANSUCHAT, 2012. "Modelling Long Memory Volatility In Agricultural Commodity Futures Returns," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-27.
    23. Robinson, P.M. & Henry, M., 1999. "Long And Short Memory Conditional Heteroskedasticity In Estimating The Memory Parameter Of Levels," Econometric Theory, Cambridge University Press, vol. 15(3), pages 299-336, June.
    24. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    25. El Hedi Arouri, Mohamed & Huong Dinh, Thanh & Khuong Nguyen, Duc, 2010. "Time-varying predictability in crude-oil markets: the case of GCC countries," Energy Policy, Elsevier, vol. 38(8), pages 4371-4380, August.
    26. Choi, Kyongwook & Zivot, Eric, 2007. "Long memory and structural changes in the forward discount: An empirical investigation," Journal of International Money and Finance, Elsevier, vol. 26(3), pages 342-363, April.
    27. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    28. Soytas, Ugur & Sari, Ramazan & Hammoudeh, Shawkat & Hacihasanoglu, Erk, 2009. "World oil prices, precious metal prices and macroeconomy in Turkey," Energy Policy, Elsevier, vol. 37(12), pages 5557-5566, December.
    29. Lescaroux, François, 2009. "On the excess co-movement of commodity prices--A note about the role of fundamental factors in short-run dynamics," Energy Policy, Elsevier, vol. 37(10), pages 3906-3913, October.
    30. El Hedi Arouri, Mohamed & Jouini, Jamel & Nguyen, Duc Khuong, 2011. "Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management," Journal of International Money and Finance, Elsevier, vol. 30(7), pages 1387-1405.
    31. Arouri, Mohamed El Hedi & Jouini, Jamel & Nguyen, Duc Khuong, 2012. "On the impacts of oil price fluctuations on European equity markets: Volatility spillover and hedging effectiveness," Energy Economics, Elsevier, vol. 34(2), pages 611-617.
    32. Akram, Q. Farooq, 2009. "Commodity prices, interest rates and the dollar," Energy Economics, Elsevier, vol. 31(6), pages 838-851, November.
    33. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
    34. Heemskerk, Marieke, 2001. "Do international commodity prices drive natural resource booms? An empirical analysis of small-scale gold mining in Suriname," Ecological Economics, Elsevier, vol. 39(2), pages 295-308, November.
    35. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
    36. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    37. Bollerslev, Tim & Ole Mikkelsen, Hans, 1999. "Long-term equity anticipation securities and stock market volatility dynamics," Journal of Econometrics, Elsevier, vol. 92(1), pages 75-99, September.
    38. Daskalaki, Charoula & Skiadopoulos, George, 2011. "Should investors include commodities in their portfolios after all? New evidence," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2606-2626, October.
    39. Watkins, Clinton & McAleer, Michael, 2008. "How has volatility in metals markets changed?," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 237-249.
    40. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    41. Tully, Edel & Lucey, Brian M., 2007. "A power GARCH examination of the gold market," Research in International Business and Finance, Elsevier, vol. 21(2), pages 316-325, June.
    42. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2010. "The macroeconomic determinants of volatility in precious metals markets," Resources Policy, Elsevier, vol. 35(2), pages 65-71, June.
    43. Diamandis, Panayiotis F., 2009. "International stock market linkages: Evidence from Latin America," Global Finance Journal, Elsevier, vol. 20(1), pages 13-30.
    44. Kristin J. Forbes & Roberto Rigobon, 2002. "No Contagion, Only Interdependence: Measuring Stock Market Comovements," Journal of Finance, American Finance Association, vol. 57(5), pages 2223-2261, October.
    45. Kaufmann, Thomas D. & Winters, Richard A., 1989. "The price of gold : A simple model," Resources Policy, Elsevier, vol. 15(4), pages 309-313, December.
    46. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    47. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    48. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    49. van Dijk, Dick & Franses, Philip Hans & Paap, Richard, 2002. "A nonlinear long memory model, with an application to US unemployment," Journal of Econometrics, Elsevier, vol. 110(2), pages 135-165, October.
    50. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    51. Hammoudeh, Shawkat & Yuan, Yuan, 2008. "Metal volatility in presence of oil and interest rate shocks," Energy Economics, Elsevier, vol. 30(2), pages 606-620, March.
    52. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
    53. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    54. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    55. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    56. Kyongwook Choi & Shawkat Hammoudeh, 2009. "Long Memory in Oil and Refined Products Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 97-116.
    57. Christie-David, Rohan & Chaudhry, Mukesh & Koch, Timothy W., 2000. "Do macroeconomics news releases affect gold and silver prices?," Journal of Economics and Business, Elsevier, vol. 52(5), pages 405-421.
    58. Shawkat Hammoudeh & Ramazan Sari & Bradley T. Ewing, 2009. "Relationships Among Strategic Commodities And With Financial Variables: A New Look," Contemporary Economic Policy, Western Economic Association International, vol. 27(2), pages 251-264, April.
    59. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    60. Sari, Ramazan & Hammoudeh, Shawkat & Soytas, Ugur, 2010. "Dynamics of oil price, precious metal prices, and exchange rate," Energy Economics, Elsevier, vol. 32(2), pages 351-362, March.
    61. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    62. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Energy Economics, Elsevier, vol. 34(1), pages 283-293.
    2. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    3. El Hedi Arouri, Mohamed & Lahiani, Amine & Nguyen, Duc Khuong, 2015. "World gold prices and stock returns in China: Insights for hedging and diversification strategies," Economic Modelling, Elsevier, vol. 44(C), pages 273-282.
    4. Igor LEBRUN & Ludovic DOBBELAERE, 2010. "A Macro-econometric Model for the Economy of Lesotho," EcoMod2010 259600102, EcoMod.
    5. Gil-Alana, Luis A. & Chang, Shinhye & Balcilar, Mehmet & Aye, Goodness C. & Gupta, Rangan, 2015. "Persistence of precious metal prices: A fractional integration approach with structural breaks," Resources Policy, Elsevier, vol. 44(C), pages 57-64.
    6. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    7. Berna Kirkulak Uludag & Zorikto Lkhamazhapov, 2014. "Long memory and structural breaks in the returns and volatility of gold: evidence from Turkey," Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3777-3787, November.
    8. Geoffrey Ngene & Kenneth A. Tah & Ali F. Darrat, 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, John Wiley & Sons, vol. 34(1), pages 61-73, September.
    9. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    10. repec:ipg:wpaper:2013-009 is not listed on IDEAS
    11. repec:ipg:wpaper:9 is not listed on IDEAS
    12. Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2013. "Long memory and asymmetry in the volatility of commodity markets and Basel Accord: choosing between models," Working Papers 2013-9, Department of Research, Ipag Business School.
    13. repec:ipg:wpaper:201409 is not listed on IDEAS
    14. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    15. David McMillan & Mark Wohar, 2011. "Structural breaks in volatility: the case of UK sector returns," Applied Financial Economics, Taylor & Francis Journals, vol. 21(15), pages 1079-1093.
    16. Kirkulak-Uludag, Berna & Lkhamazhapov, Zorikto, 2016. "The volatility dynamics of spot and futures gold prices: Evidence from Russia," Research in International Business and Finance, Elsevier, vol. 38(C), pages 474-484.
    17. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    18. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    19. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    20. Aikins Abakah, Emmanuel Joel & Gil-Alana, Luis A. & Tripathy, Trilochan, 2022. "Stochastic structure of metal prices: Evidence from fractional integration non-linearities and breaks," Resources Policy, Elsevier, vol. 78(C).
    21. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    22. Adnen Ben Nasr & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Modelling the volatility of the Dow Jones Islamic Market World Index using a fractionally integrated time-varying GARCH (FITVGARCH) model," Applied Financial Economics, Taylor & Francis Journals, vol. 24(14), pages 993-1004, July.
    23. Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.

    More about this item

    JEL classification:

    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00798033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.