Prediction from ARFIMA models: Comparisons between MLE and semiparametric estimation procedures
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2011.02.012
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shimotsu, Katsumi, 2010.
"Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend,"
Econometric Theory, Cambridge University Press, vol. 26(2), pages 501-540, April.
- Katsumi Shimotsu, 2006. "Exact Local Whittle Estimation of Fractional Integration with Unknown Mean and Time Trend," Working Paper 1061, Economics Department, Queen's University.
- Donald W. K. Andrews & Patrik Guggenberger, 2003.
"A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter,"
Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
- Donald W.K. Andrews & Patrik Guggenberger, 2000. "A Bias-Reduced Log-Periodogram Regression Estimator for the Long-Memory Parameter," Cowles Foundation Discussion Papers 1263, Cowles Foundation for Research in Economics, Yale University.
- Tom Doan, "undated". "AGFRACTD: RATS procedure to compute Andrews-Guggenberger estimate of fractional difference," Statistical Software Components RTS00005, Boston College Department of Economics.
- Baillie, Richard T. & Kapetanios, George, 2008. "Nonlinear models for strongly dependent processes with financial applications," Journal of Econometrics, Elsevier, vol. 147(1), pages 60-71, November.
- Bhardwaj, Geetesh & Swanson, Norman R., 2006.
"An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
- Geetesh Bhardwaj & Norman Swanson, 2004. "An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series," Departmental Working Papers 200422, Rutgers University, Department of Economics.
- Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
- Hidalgo, J. & Yajima, Y., 2002. "Prediction And Signal Extraction Of Strongly Dependent Processes In The Frequency Domain," Econometric Theory, Cambridge University Press, vol. 18(3), pages 584-624, June.
- Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
- Peter M Robinson, 2006. "Conditional-Sum-of-Squares Estimation ofModels for Stationary Time Series with Long Memory," STICERD - Econometrics Paper Series 505, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- D. Poskitt, 2007. "Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 697-725, December.
- Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
- Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006.
"Consistent estimation of the memory parameter for nonlinear time series,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 211-251, March.
- V Dalla & L Giraitis & J Hidalgo, "undated". "Consistent estimation of the memory parameter for nonlinear time series," Discussion Papers 05/17, Department of Economics, University of York.
- Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameterfor nonlinear time series," STICERD - Econometrics Paper Series /06/497, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Diebold, Francis X. & Inoue, Atsushi, 2001.
"Long memory and regime switching,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
- Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
- Donald W. K. Andrews & Yixiao Sun, 2004.
"Adaptive Local Polynomial Whittle Estimation of Long-range Dependence,"
Econometrica, Econometric Society, vol. 72(2), pages 569-614, March.
- Donald W.K. Andrews & Yixiao Sun, 2002. "Adaptive Local Polynomial Whittle Estimation of Long-range Dependence," Cowles Foundation Discussion Papers 1384, Cowles Foundation for Research in Economics, Yale University.
- ANDREWS, DONALD W & Sun, Yixiao X, 2002. "Adaptive Local Polynomial Whittle Estimation of Long-Range Dependence," University of California at San Diego, Economics Working Paper Series qt9wt048tt, Department of Economics, UC San Diego.
- Marc Henry, 2001. "Robust Automatic Bandwidth for Long Memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(3), pages 293-316, May.
- Naoya Katayama, 2008. "Asymptotic prediction of mean squared error for long-memory processes with estimated parameters," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 690-720.
- Baillie, Richard T., 1980. "Predictions from ARMAX models," Journal of Econometrics, Elsevier, vol. 12(3), pages 365-374, April.
- Robinson, Peter, 2006. "Conditional-sum-of-squares estimation of models for stationary time series with long memory," LSE Research Online Documents on Economics 4536, London School of Economics and Political Science, LSE Library.
- Christopher F. Baum & John Barkoulas, 2006.
"Long-memory forecasting of US monetary indices,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 291-302.
- John Barkoulas & Christopher F. Baum, 2003. "Long-Memory Forecasting of U.S. Monetary Indices," Boston College Working Papers in Economics 558, Boston College Department of Economics.
- Doornik Jurgen A & Ooms Marius, 2004. "Inference and Forecasting for ARFIMA Models With an Application to US and UK Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-25, May.
- Diebold, Francis X. & Lindner, Peter, 1996. "Fractional integration and interval prediction," Economics Letters, Elsevier, vol. 50(3), pages 305-313, March.
- C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
- Bhansali, R. J. & Kokoszka, P. S., 2002. "Computation of the forecast coefficients for multistep prediction of long-range dependent time series," International Journal of Forecasting, Elsevier, vol. 18(2), pages 181-206.
- Shimotsu, Katsumi & Phillips, Peter C.B., 2006. "Local Whittle estimation of fractional integration and some of its variants," Journal of Econometrics, Elsevier, vol. 130(2), pages 209-233, February.
- Phillips, Peter C.B., 2007.
"Unit root log periodogram regression,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 104-124, May.
- Peter C.B. Phillips, 1999. "Unit Root Log Periodogram Regression," Cowles Foundation Discussion Papers 1244, Cowles Foundation for Research in Economics, Yale University.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Geoffrey Ngene & Charles Lambert & Ali Darrat, 2015. "Testing Long Memory in the Presence of Structural Breaks: An Application to Regional and National Housing Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 50(4), pages 465-483, May.
- Yuan, Xiaohui & Tan, Qingxiong & Lei, Xiaohui & Yuan, Yanbin & Wu, Xiaotao, 2017. "Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine," Energy, Elsevier, vol. 129(C), pages 122-137.
- J. Eduardo Vera‐Valdés, 2020.
"On long memory origins and forecast horizons,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 811-826, August.
- J. Eduardo Vera-Vald'es, 2017. "On Long Memory Origins and Forecast Horizons," Papers 1712.08057, arXiv.org.
- Pietro Murialdo & Linda Ponta & Anna Carbone, 2020. "Long-Range Dependence in Financial Markets: a Moving Average Cluster Entropy Approach," Papers 2004.14736, arXiv.org.
- Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
- Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
- Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
- Javier Haulde & Morten Ørregaard Nielsen, 2022.
"Fractional integration and cointegration,"
CREATES Research Papers
2022-02, Department of Economics and Business Economics, Aarhus University.
- Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
- Baillie, Richard T. & Kapetanios, George, 2008. "Nonlinear models for strongly dependent processes with financial applications," Journal of Econometrics, Elsevier, vol. 147(1), pages 60-71, November.
- Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Modified information criteria and selection of long memory time series models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 116-131.
- Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Bandwidth selection by cross-validation for forecasting long memory financial time series," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 129-143.
- Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
- Baillie Richard T. & Kapetanios George, 2016. "On the estimation of short memory components in long memory time series models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 365-375, September.
- Chatzikonstanti, Vasiliki & Venetis, Ioannis A., 2015. "Long memory in log-range series: Do structural breaks matter?," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 104-113.
- Slim Chaouachi & Zied Ftiti & Frederic Teulon, 2014. "Explaining the Tunisian Real Exchange: Long Memory versus Structural Breaks," Working Papers 2014-147, Department of Research, Ipag Business School.
- Perron, Pierre & Qu, Zhongjun, 2010.
"Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
- Pierre Perron & Zhongjun Qu, 2008. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-004, Boston University - Department of Economics.
- Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
- Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
- Zied Ftiti & Slim Chaouachi, 2018. "What Can We Learn About the Real Exchange Rate Behavior in the Case of a Peripheral Country?," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(3), pages 681-707, September.
- Carlos Barros & Luis Gil-Alana, 2013.
"Inflation Forecasting in Angola: A Fractional Approach,"
African Development Review, African Development Bank, vol. 25(1), pages 91-104.
- Carlos P. Barros & Luis A. Gil-Alana, 2013. "Inflation Forecasting in Angola: A Fractional Approach," African Development Review, African Development Bank, vol. 25(1), pages 91-104, March.
- Carlos Barros & Luis Gil-Alana, 2012. "Inflation forecasting in Angola: a fractional approach," CEsA Working Papers 103, CEsA - Centre for African and Development Studies.
- Arteche, Josu & Orbe, Jesus, 2016. "A bootstrap approximation for the distribution of the Local Whittle estimator," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 645-660.
- Per Frederiksen & Frank S. Nielsen, 2008. "Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood," CREATES Research Papers 2008-59, Department of Economics and Business Economics, Aarhus University.
- Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005.
"Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration,"
Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
- Morten Ø. Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison Of Parametric, Semiparametric, And Wavelet Estimators Of Fractional Integration," Working Paper 1189, Economics Department, Queen's University.
- Choi, Kyongwook & Zivot, Eric, 2007. "Long memory and structural changes in the forward discount: An empirical investigation," Journal of International Money and Finance, Elsevier, vol. 26(3), pages 342-363, April.
- Al-Shboul, Mohammad & Anwar, Sajid, 2016. "Fractional integration in daily stock market indices at Jordan's Amman stock exchange," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 16-37.
- Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
More about this item
Keywords
Long-memory time series; Semiparametric estimation; Whittle estimators; ARFIMA models; Multi-step forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:28:y:2012:i:1:p:46-53. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.