Fractionally integrated ARMA for crude palm oil prices prediction: case of potentially overdifference
Author
Abstract
Suggested Citation
DOI: 10.1080/02664763.2013.825706
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tan, Pei P. & Galagedera, Don U.A. & Maharaj, Elizabeth A., 2012. "A wavelet based investigation of long memory in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2330-2341.
- Diebold, Francis X. & Inoue, Atsushi, 2001.
"Long memory and regime switching,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
- Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
- Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996.
"Efficient Tests for an Autoregressive Unit Root,"
Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
- Graham Elliott & Thomas J. Rothenberg & James H. Stock, 1992. "Efficient Tests for an Autoregressive Unit Root," NBER Technical Working Papers 0130, National Bureau of Economic Research, Inc.
- Tom Doan, "undated". "GLSDETREND: RATS procedure to perform local to unity GLS detrending," Statistical Software Components RTS00077, Boston College Department of Economics.
- Tom Doan, "undated". "ERSTEST: RATS procedure to perform Elliott-Rothenberg-Stock unit root tests," Statistical Software Components RTS00066, Boston College Department of Economics.
- Kwan, Wilson & Li, Wai Keung & Li, Guodong, 2012. "On the estimation and diagnostic checking of the ARFIMA–HYGARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3632-3644.
- Chortareas, Georgios & Jiang, Ying & Nankervis, John. C., 2011. "Forecasting exchange rate volatility using high-frequency data: Is the euro different?," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1089-1107, October.
- Baillie, Richard T. & Chung, Sang-Kuck, 2002. "Modeling and forecasting from trend-stationary long memory models with applications to climatology," International Journal of Forecasting, Elsevier, vol. 18(2), pages 215-226.
- Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
- Ellis, Craig & Wilson, Patrick, 2004. "Another look at the forecast performance of ARFIMA models," International Review of Financial Analysis, Elsevier, vol. 13(1), pages 63-81.
- Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005.
"Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements,"
Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
- Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
- Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
- Wang, Yudong & Wu, Chongfeng, 2012. "What can we learn from the history of gasoline crack spreads?: Long memory, structural breaks and modeling implications," Economic Modelling, Elsevier, vol. 29(2), pages 349-360.
- Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012.
"Long memory and structural breaks in modeling the return and volatility dynamics of precious metals,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
- Mohamed El Hedi Arouri & Shawkat Hammoudeh & Amine Lahiani & Duc Khuong Nguyen, 2013. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," Working Papers hal-00798033, HAL.
- Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
- Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
- Xiu, Jin & Jin, Yao, 2007. "Empirical study of ARFIMA model based on fractional differencing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 138-154.
- Bhardwaj, Geetesh & Swanson, Norman R., 2006.
"An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
- Geetesh Bhardwaj & Norman Swanson, 2004. "An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series," Departmental Working Papers 200422, Rutgers University, Department of Economics.
- Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shaher Al-Gounmeein Remal & Ismail Mohd Tahir, 2021. "Modelling and forecasting monthly Brent crude oil prices: a long memory and volatility approach," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 29-54, March.
- Xin Ma & Yubin Cai & Hong Yuan & Yanqiao Deng, 2023. "Partially Linear Component Support Vector Machine for Primary Energy Consumption Forecasting of the Electric Power Sector in the United States," Sustainability, MDPI, vol. 15(9), pages 1-26, April.
- Wu, Junhao & Dong, Jinghan & Wang, Zhaocai & Hu, Yuan & Dou, Wanting, 2023. "A novel hybrid model based on deep learning and error correction for crude oil futures prices forecast," Resources Policy, Elsevier, vol. 83(C).
- Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018.
"Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks,"
Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Post-Print hal-01982032, HAL.
- Choi, Kyongwook & Zivot, Eric, 2007. "Long memory and structural changes in the forward discount: An empirical investigation," Journal of International Money and Finance, Elsevier, vol. 26(3), pages 342-363, April.
- repec:hum:wpaper:sfb649dp2007-027 is not listed on IDEAS
- Härdle, Wolfgang Karl & Mungo, Julius, 2007. "Long memory persistence in the factor of Implied volatility dynamics," SFB 649 Discussion Papers 2007-027, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Al-Shboul, Mohammad & Anwar, Sajid, 2016. "Fractional integration in daily stock market indices at Jordan's Amman stock exchange," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 16-37.
- Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005.
"Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study,"
Trinity Economics Papers
tep20021, Trinity College Dublin, Department of Economics.
- Bond, Derek & Harrison, Michael J & O’Brien, Edward J., 2006. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Research Technical Papers 2/RT/06, Central Bank of Ireland.
- Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005.
"What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks,"
Working Papers
258, Barcelona School of Economics.
- Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is what?: A simple time-domain test of long-memory vs. structural breaks," Economics Working Papers 954, Department of Economics and Business, Universitat Pompeu Fabra.
- Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
- Chevillon, Guillaume & Mavroeidis, Sophocles, 2011.
"Learning generates Long Memory,"
ESSEC Working Papers
WP1113, ESSEC Research Center, ESSEC Business School.
- Guillaume Chevillon & Sophocles Mavroeidis, 2013. "Learning generates Long Memory," Post-Print hal-00661012, HAL.
- Chevillon, Guillaume & Hecq, Alain & Laurent, Sébastien, 2018.
"Generating univariate fractional integration within a large VAR(1),"
Journal of Econometrics, Elsevier, vol. 204(1), pages 54-65.
- Guillaume Chevillon & Alain Hecq & Sébastien Laurent, 2018. "Generating Univariate Fractional Integration within a Large VAR(1)," Working Papers halshs-01944588, HAL.
- Guillaume Chevillon & Alain Hecq & Sébastien Laurent, 2018. "Generating univariate fractional integration within a large VAR(1)," Post-Print hal-01980783, HAL.
- Guillaume Chevillon & Alain Hecq & Sébastien Laurent, 2018. "Generating Univariate Fractional Integration within a Large VAR(1)," AMSE Working Papers 1844, Aix-Marseille School of Economics, France.
- Rasmus T. Varneskov & Pierre Perron, 2018.
"Combining long memory and level shifts in modelling and forecasting the volatility of asset returns,"
Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 371-393, March.
- Rasmus Tangsgaard Varneskov & Pierre Perron, 2011. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," CREATES Research Papers 2011-26, Department of Economics and Business Economics, Aarhus University.
- Rasmus T. Varneskov & Pierre Perron, 2015. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," Boston University - Department of Economics - Working Papers Series wp2015-015, Boston University - Department of Economics.
- Pierre Perron & Rasmus T. Varneskov, 2011. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," Boston University - Department of Economics - Working Papers Series WP2011-050, Boston University - Department of Economics.
- Rasmus T. Varneskov & Pierre Perron, 2017. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," Boston University - Department of Economics - Working Papers Series WP2017-006, Boston University - Department of Economics.
- Laura Mayoral, 2005.
"Is the observed persistence spurious? A test for fractional integration versus short memory and structural breaks,"
Economics Working Papers
956, Department of Economics and Business, Universitat Pompeu Fabra.
- Laura Mayoral, 2006. "Is the Observed Persistence Spurious? A Test for Fractional Integration versus Short Memory and Structural Breaks," Working Papers 260, Barcelona School of Economics.
- Susanne M. Schennach, 2018.
"Long Memory via Networking,"
Econometrica, Econometric Society, vol. 86(6), pages 2221-2248, November.
- Susanne M. Schennach, 2013. "Long memory via networking," CeMMAP working papers 13/13, Institute for Fiscal Studies.
- Susanne M. Schennach, 2018. "Long memory via networking," CeMMAP working papers CWP49/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Susanne M. Schennach, 2013. "Long memory via networking," CeMMAP working papers CWP13/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Nicholas Kilimani & Amandine Nakumuryango & Siobhan Redford, 2014.
"Predicting BRICS stock returns using ARFIMA models,"
Applied Financial Economics, Taylor & Francis Journals, vol. 24(17), pages 1159-1166, September.
- Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Nicholas Kilimani & Amandine Nakumuryango & Siobhan Redford, 2012. "Predicting BRICS Stock Returns Using ARFIMA Models," Working Papers 201235, University of Pretoria, Department of Economics.
- Chevillon, G. & Hecq, A.W. & Laurent, S.F.J.A., 2015.
"Long memory through marginalization of large systems and hidden cross-section dependence,"
Research Memorandum
014, Maastricht University, Graduate School of Business and Economics (GSBE).
- Guillaume Chevillon & Alain Hecq & Sébastien Laurent, 2015. "Long Memory Through Marginalization of Large Systems and Hidden Cross-Section Dependence," Working Papers hal-01158524, HAL.
- Chevillon, Guillaume & Hecq , Alain & Laurent, Sébastien, 2015. "Long Memory Through Marginalization of Large Systems and Hidden Cross-Section Dependence," ESSEC Working Papers WP1507, ESSEC Research Center, ESSEC Business School.
- Dennis Alvaro & Ángel Guillén & Gabriel Rodríguez, 2017.
"Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts,"
Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 153(1), pages 71-103, February.
- Gabriel Rodríguez & Dennis Alvaro & Ángel Guillén, 2016. "Modelling the Volatility of Commodities Prices using a Stochastic Volatility Model with Random Level Shifts," Documentos de Trabajo / Working Papers 2016-414, Departamento de Economía - Pontificia Universidad Católica del Perú.
- Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
- Gil-Alana, Luis A. & Mudida, Robert & Zerbo, Eleazar, 2021. "GDP per capita IN SUB-SAHARAN Africa: A time series approach using long memory," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 175-190.
- Bhardwaj, Geetesh & Swanson, Norman R., 2006.
"An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
- Geetesh Bhardwaj & Norman Swanson, 2004. "An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series," Departmental Working Papers 200422, Rutgers University, Department of Economics.
- Guglielmo Maria Caporale & Luis A. Gil‐Alana & James C. Orlando, 2016.
"Linkages Between the US and European Stock Markets: A Fractional Cointegration Approach,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 21(2), pages 143-153, April.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & C. James Orlando, 2015. "Linkages between the US and European Stock Markets: A Fractional Cointegration Approach," CESifo Working Paper Series 5523, CESifo.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & C. James Orlando, 2015. "Linkages between the US and European Stock Markets: A Fractional Cointegration Approach," Discussion Papers of DIW Berlin 1505, DIW Berlin, German Institute for Economic Research.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:40:y:2013:i:12:p:2735-2748. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.