IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v88y2011i1p180-191.html
   My bibliography  Save this item

Thermally activated building systems (TABS): Energy efficiency as a function of control strategy, hydronic circuit topology and (cold) generation system

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ibrahim, Mohamad & Wurtz, Etienne & Biwole, Pascal Henry & Achard, Patrick, 2014. "Transferring the south solar energy to the north facade through embedded water pipes," Energy, Elsevier, vol. 78(C), pages 834-845.
  2. Joe, Jaewan & Karava, Panagiota, 2019. "A model predictive control strategy to optimize the performance of radiant floor heating and cooling systems in office buildings," Applied Energy, Elsevier, vol. 245(C), pages 65-77.
  3. Gallardo, Andres & Berardi, Umberto, 2021. "Design and control of radiant ceiling panels incorporating phase change materials for cooling applications," Applied Energy, Elsevier, vol. 304(C).
  4. Wang, Lin-Shu & Ma, Peizheng, 2016. "The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings," Applied Energy, Elsevier, vol. 162(C), pages 183-196.
  5. Xu, Xinhua & Yu, Jinghua & Wang, Shengwei & Wang, Jinbo, 2014. "Research and application of active hollow core slabs in building systems for utilizing low energy sources," Applied Energy, Elsevier, vol. 116(C), pages 424-435.
  6. Schmelas, Martin & Feldmann, Thomas & Bollin, Elmar, 2017. "Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study," Applied Energy, Elsevier, vol. 199(C), pages 294-309.
  7. Costa, Andrea & Keane, Marcus M. & Torrens, J. Ignacio & Corry, Edward, 2013. "Building operation and energy performance: Monitoring, analysis and optimisation toolkit," Applied Energy, Elsevier, vol. 101(C), pages 310-316.
  8. He, Xianya & Huang, Jingzhi & Liu, Zekun & Lin, Jian & Jing, Rui & Zhao, Yingru, 2023. "Topology optimization of thermally activated building system in high-rise building," Energy, Elsevier, vol. 284(C).
  9. Chen, Zhaoxin & Li, Jiaxuan & Tang, Guoqiang & Zhang, Jiahao & Zhang, Donghai & Gao, Penghui, 2024. "High-efficiency heating and cooling technology with embedded pipes in buildings and underground structures: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  10. Joudi, Ali & Svedung, Harald & Bales, Chris & Rönnelid, Mats, 2011. "Highly reflective coatings for interior and exterior steel cladding and the energy efficiency of buildings," Applied Energy, Elsevier, vol. 88(12), pages 4655-4666.
  11. Lim, Jae-Han & Song, Jin-Hee & Song, Seung-Yeong, 2014. "Development of operational guidelines for thermally activated building system according to heating and cooling load characteristics," Applied Energy, Elsevier, vol. 126(C), pages 123-135.
  12. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  13. Iakovos T. Michailidis & Roozbeh Sangi & Panagiotis Michailidis & Thomas Schild & Johannes Fuetterer & Dirk Mueller & Elias B. Kosmatopoulos, 2020. "Balancing Energy Efficiency with Indoor Comfort Using Smart Control Agents: A Simulative Case Study," Energies, MDPI, vol. 13(23), pages 1-28, November.
  14. Verbeke, Stijn & Audenaert, Amaryllis, 2018. "Thermal inertia in buildings: A review of impacts across climate and building use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2300-2318.
  15. Faraj, Khaireldin & Khaled, Mahmoud & Faraj, Jalal & Hachem, Farouk & Castelain, Cathy, 2020. "Phase change material thermal energy storage systems for cooling applications in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  16. Wu, Wentao & Zhang, Wei & Benner, Jingru & Malkawi, Ali, 2020. "Critical evaluation of analytical methods for thermally activated building systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
  17. Chung, Mo & Park, Hwa-Choon, 2012. "Building energy demand patterns for department stores in Korea," Applied Energy, Elsevier, vol. 90(1), pages 241-249.
  18. Jia, Hongyuan & Pang, Xiufeng & Haves, Philip, 2018. "Experimentally-determined characteristics of radiant systems for office buildings," Applied Energy, Elsevier, vol. 221(C), pages 41-54.
  19. Zhengrong Li & Dongkai Zhang & Cui Li, 2020. "Experimental Study on Thermal Response Characteristics of Indoor Environment with Modular Radiant Cooling System," Energies, MDPI, vol. 13(19), pages 1-13, September.
  20. Yu, Tao & Heiselberg, Per & Lei, Bo & Zhang, Chen & Pomianowski, Michal & Jensen, Rasmus, 2016. "Experimental study on the dynamic performance of a novel system combining natural ventilation with diffuse ceiling inlet and TABS," Applied Energy, Elsevier, vol. 169(C), pages 218-229.
  21. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
  22. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2014. "Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower," Applied Energy, Elsevier, vol. 127(C), pages 172-181.
  23. Heidenthaler, Daniel & Leeb, Markus & Schnabel, Thomas & Huber, Hermann, 2021. "Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach," Energy, Elsevier, vol. 233(C).
  24. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude," Applied Energy, Elsevier, vol. 146(C), pages 84-91.
  25. Krzaczek, M. & Florczuk, J. & Tejchman, J., 2019. "Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings," Applied Energy, Elsevier, vol. 254(C).
  26. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2013. "Modeling of TABS-based thermally manageable buildings in Simulink," Applied Energy, Elsevier, vol. 104(C), pages 791-800.
  27. Xuemin Sui & Huajiang Wang & Ming Qu & Huitao Liu, 2020. "Thermal Response Characteristics of Intermittently Cooled Room with Tube-Embedded Cooling Slab and Optimization of Intermittent Control," Energies, MDPI, vol. 13(7), pages 1-28, March.
  28. Woong June Chung & Sang Hoon Park & Myoung Souk Yeo & Kwang Woo Kim, 2017. "Control of Thermally Activated Building System Considering Zone Load Characteristics," Sustainability, MDPI, vol. 9(4), pages 1-14, April.
  29. Lydon, G.P. & Hofer, J. & Svetozarevic, B. & Nagy, Z. & Schlueter, A., 2017. "Coupling energy systems with lightweight structures for a net plus energy building," Applied Energy, Elsevier, vol. 189(C), pages 310-326.
  30. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Energy storage and heat extraction – From thermally activated building systems (TABS) to thermally homeostatic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 677-685.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.