IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v245y2019icp65-77.html
   My bibliography  Save this article

A model predictive control strategy to optimize the performance of radiant floor heating and cooling systems in office buildings

Author

Listed:
  • Joe, Jaewan
  • Karava, Panagiota

Abstract

This paper introduces a smart operation strategy based on model predictive control (MPC) to optimize the performance of hydronic radiant floor systems in office buildings and presents results from its implementation in an actual building. Our MPC approach uses dynamic estimates and predictions of zone loads and temperatures, outdoor weather conditions, and HVAC system models to minimize energy consumption and cost while meeting equipment and thermal comfort constraints. It includes data-driven building models estimated and validated using data from an actual building, and deploys an optimizer based on constraint linear/quadratic programming with hard comfort bounds that yields a global minimum with predicted exogenous disturbances. The MPC results show 34% cost savings compared to baseline feedback control during the cooling season and 16% energy use reduction during the heating season. Also, the radiant floor system with the predictive controller shows 29–50% energy savings when compared with a baseline air delivery system serving two identical thermal zones located in the same building.

Suggested Citation

  • Joe, Jaewan & Karava, Panagiota, 2019. "A model predictive control strategy to optimize the performance of radiant floor heating and cooling systems in office buildings," Applied Energy, Elsevier, vol. 245(C), pages 65-77.
  • Handle: RePEc:eee:appene:v:245:y:2019:i:c:p:65-77
    DOI: 10.1016/j.apenergy.2019.03.209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919306191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lehmann, B. & Dorer, V. & Gwerder, M. & Renggli, F. & Tödtli, J., 2011. "Thermally activated building systems (TABS): Energy efficiency as a function of control strategy, hydronic circuit topology and (cold) generation system," Applied Energy, Elsevier, vol. 88(1), pages 180-191, January.
    2. Gholamibozanjani, Gohar & Tarragona, Joan & Gracia, Alvaro de & Fernández, Cèsar & Cabeza, Luisa F. & Farid, Mohammed M., 2018. "Model predictive control strategy applied to different types of building for space heating," Applied Energy, Elsevier, vol. 231(C), pages 959-971.
    3. Cho, S.-H & Zaheer-uddin, M, 1999. "An experimental study of multiple parameter switching control for radiant floor heating systems," Energy, Elsevier, vol. 24(5), pages 433-444.
    4. Cox, Sam J. & Kim, Dongsu & Cho, Heejin & Mago, Pedro, 2019. "Real time optimal control of district cooling system with thermal energy storage using neural networks," Applied Energy, Elsevier, vol. 238(C), pages 466-480.
    5. Ahn, Byung-Cheon & Song, Jae-Yeob, 2010. "Control characteristics and heating performance analysis of automatic thermostatic valves for radiant slab heating system in residential apartments," Energy, Elsevier, vol. 35(4), pages 1615-1624.
    6. Mirakhorli, Amin & Dong, Bing, 2018. "Model predictive control for building loads connected with a residential distribution grid," Applied Energy, Elsevier, vol. 230(C), pages 627-642.
    7. Turner, W.J.N. & Walker, I.S. & Roux, J., 2015. "Peak load reductions: Electric load shifting with mechanical pre-cooling of residential buildings with low thermal mass," Energy, Elsevier, vol. 82(C), pages 1057-1067.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Zhe & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2020. "Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system," Applied Energy, Elsevier, vol. 259(C).
    2. Anastaselos, Dimitrios & Theodoridou, Ifigeneia & Papadopoulos, Agis M. & Hegger, Manfred, 2011. "Integrated evaluation of radiative heating systems for residential buildings," Energy, Elsevier, vol. 36(7), pages 4207-4215.
    3. Coccia, Gianluca & Mugnini, Alice & Polonara, Fabio & Arteconi, Alessia, 2021. "Artificial-neural-network-based model predictive control to exploit energy flexibility in multi-energy systems comprising district cooling," Energy, Elsevier, vol. 222(C).
    4. Zhengrong Li & Dongkai Zhang & Cui Li, 2020. "Experimental Study on Thermal Response Characteristics of Indoor Environment with Modular Radiant Cooling System," Energies, MDPI, vol. 13(19), pages 1-13, September.
    5. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    6. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    7. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    8. Hau, Lee Cheun & Lim, Yun Seng & Liew, Serena Miao San, 2020. "A novel spontaneous self-adjusting controller of energy storage system for maximum demand reductions under penetration of photovoltaic system," Applied Energy, Elsevier, vol. 260(C).
    9. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Vašak, Mario & Banjac, Anita & Hure, Nikola & Novak, Hrvoje & Kovačević, Marko, 2023. "Predictive control based assessment of building demand flexibility in fixed time windows," Applied Energy, Elsevier, vol. 329(C).
    11. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    12. Yuan, Jianjuan & Huang, Ke & Han, Zhao & Zhou, Zhihua & Lu, Shilei, 2021. "A new feedback predictive model for improving the operation efficiency of heating station based on indoor temperature," Energy, Elsevier, vol. 222(C).
    13. Tang, Rui & Wang, Shengwei & Shan, Kui & Cheung, Howard, 2018. "Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting," Energy, Elsevier, vol. 151(C), pages 771-781.
    14. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Schmelas, Martin & Feldmann, Thomas & Bollin, Elmar, 2017. "Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study," Applied Energy, Elsevier, vol. 199(C), pages 294-309.
    16. Mu, Yunfei & Xu, Yanze & Zhang, Jiarui & Wu, Zeqing & Jia, Hongjie & Jin, Xiaolong & Qi, Yan, 2023. "A data-driven rolling optimization control approach for building energy systems that integrate virtual energy storage systems," Applied Energy, Elsevier, vol. 346(C).
    17. He, Xianya & Huang, Jingzhi & Liu, Zekun & Lin, Jian & Jing, Rui & Zhao, Yingru, 2023. "Topology optimization of thermally activated building system in high-rise building," Energy, Elsevier, vol. 284(C).
    18. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu, 2023. "Globally optimal control of hybrid chilled water plants integrated with small-scale thermal energy storage for energy-efficient operation," Energy, Elsevier, vol. 262(PA).
    19. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    20. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:245:y:2019:i:c:p:65-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.