IDEAS home Printed from https://ideas.repec.org/p/nex/wpaper/breakdown.html
   My bibliography  Save this paper

Detecting the Breakdown of Traffic

Author

Listed:
  • Xi Zou
  • David Levinson

    (Nexus (Networks, Economics, and Urban Systems) Research Group, Department of Civil Engineering, University of Minnesota)

Abstract

Timely traffic prediction is important in advanced traffic management systems to make possible rapid and effective response by traffic control facilities. From the observations of traffic flow, the time series present repetitive or regular behavior over time that distinguishes time series analysis of traffic flow from classical statistics, which assumes independence over time. By taking advantage of tools in frequency domain analysis, this paper proposes a new criterion function that can detect the onset of congestion. It is found that the changing rate of the cross-correlation between density dynamics and flow rate determines traffic transferring from free flow phase to the congestion phase. A definition of traffic stability is proposed based on the criterion function. The new method suggests that an unreturnable transition will occur only if the changing rate of the cross-correlation exceeds a threshold. Based on real traffic data, detection of congestion is conducted in which the new scheme performs well compared to previous studies.

Suggested Citation

  • Xi Zou & David Levinson, 2006. "Detecting the Breakdown of Traffic," Working Papers 000034, University of Minnesota: Nexus Research Group.
  • Handle: RePEc:nex:wpaper:breakdown
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11299/179810
    File Function: First version, 2007
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Okutani, Iwao & Stephanedes, Yorgos J., 1984. "Dynamic prediction of traffic volume through Kalman filtering theory," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 1-11, February.
    2. Daganzo, C. F. & Cassidy, M. J. & Bertini, R. L., 1999. "Possible explanations of phase transitions in highway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(5), pages 365-379, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
    2. Arnott, Richard & Inci, Eren, 2010. "The stability of downtown parking and traffic congestion," Journal of Urban Economics, Elsevier, vol. 68(3), pages 260-276, November.
    3. Tu, Huizhao & Li, Hao & van Lint, Hans & van Zuylen, Henk, 2012. "Modeling travel time reliability of freeways using risk assessment techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1528-1540.
    4. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    5. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    6. M. Bierlaire & F. Crittin, 2004. "An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables," Operations Research, INFORMS, vol. 52(1), pages 116-127, February.
    7. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    8. Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    9. Jiasong Zhu & Anthony Gar-On Yeh, 2012. "A Self-Learning Short-Term Traffic Forecasting System," Environment and Planning B, , vol. 39(3), pages 471-485, June.
    10. Safikhani, Abolfazl & Kamga, Camille & Mudigonda, Sandeep & Faghih, Sabiheh Sadat & Moghimi, Bahman, 2020. "Spatio-temporal modeling of yellow taxi demands in New York City using generalized STAR models," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1138-1148.
    11. Zhang, Jie & Song, Chunyue & Cao, Shan & Zhang, Chun, 2023. "FDST-GCN: A Fundamental Diagram based Spatiotemporal Graph Convolutional Network for expressway traffic forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    12. Balaji Ganesh Rajagopal & Manish Kumar & Pijush Samui & Mosbeh R. Kaloop & Usama Elrawy Shahdah, 2022. "A Hybrid DNN Model for Travel Time Estimation from Spatio-Temporal Features," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    13. Jin, Wen-Long & Zhang, H. Michael, 2013. "An instantaneous kinematic wave theory of diverging traffic," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 1-16.
    14. Hongxia Ge & Siteng Li & Rongjun Cheng & Zhenlei Chen, 2022. "Self-Attention ConvLSTM for Spatiotemporal Forecasting of Short-Term Online Car-Hailing Demand," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    15. Lu, Xijin & Ma, Changxi & Qiao, Yihuan, 2021. "Short-term demand forecasting for online car-hailing using ConvLSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    16. He, Yuxin & Zhao, Yang & Luo, Qin & Tsui, Kwok-Leung, 2022. "Forecasting nationwide passenger flows at city-level via a spatiotemporal deep learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    17. Small, Kenneth A. & Ng, Chen Feng, 2014. "Optimizing road capacity and type," Economics of Transportation, Elsevier, vol. 3(2), pages 145-157.
    18. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    19. Shenghan Zhou & Chaofan Wei & Chaofei Song & Yu Fu & Rui Luo & Wenbing Chang & Linchao Yang, 2022. "A Hybrid Deep Learning Model for Short-Term Traffic Flow Pre-Diction Considering Spatiotemporal Features," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    20. Zhai, Linbo & Yang, Yong & Song, Shudian & Ma, Shuyue & Zhu, Xiumin & Yang, Feng, 2021. "Self-supervision Spatiotemporal Part-Whole Convolutional Neural Network for Traffic Prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).

    More about this item

    Keywords

    Congestion; Queueing; Traffic Flow; Congestion Pricing;
    All these keywords.

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nex:wpaper:breakdown. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Levinson (email available below). General contact details of provider: https://edirc.repec.org/data/nexmnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.