IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v514y2019icp786-795.html
   My bibliography  Save this article

Long memory is important: A test study on deep-learning based car-following model

Author

Listed:
  • Wang, Xiao
  • Jiang, Rui
  • Li, Li
  • Lin, Yi-Lun
  • Wang, Fei-Yue

Abstract

Whether long memory effect plays an important role in car-following models remains unsolved. In this paper, we study the possible relationship between long memory effect and hysteresis phenomena observed in practice. Especially, we have compared the performance of different deep learning based car-following models that take various time-scale historical information as inputs. Test show that hysteresis phenomena can be correctly simulated only by car-following models with long memory. So, we argue that car-following models should embed long memory effect appropriately.

Suggested Citation

  • Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
  • Handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:786-795
    DOI: 10.1016/j.physa.2018.09.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118312639
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kai Yuan & Victor L. Knoop & Serge P. Hoogendoorn, 2017. "A Microscopic Investigation Into the Capacity Drop: Impacts of Longitudinal Behavior on the Queue Discharge Rate," Transportation Science, INFORMS, vol. 51(3), pages 852-862, August.
    2. Zhang, H. M., 1999. "A mathematical theory of traffic hysteresis," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 1-23, February.
    3. Denos C. Gazis & Robert Herman & Richard W. Rothery, 1961. "Nonlinear Follow-the-Leader Models of Traffic Flow," Operations Research, INFORMS, vol. 9(4), pages 545-567, August.
    4. Leslie C. Edie, 1961. "Car-Following and Steady-State Theory for Noncongested Traffic," Operations Research, INFORMS, vol. 9(1), pages 66-76, February.
    5. Hu, Shou-Xin & Gao, Kun & Wang, Bing-Hong & Lu, Yu-Feng & Fu, Chuan-Ji, 2007. "Abnormal hysteresis effect and phase transitions in a velocity-difference dependent randomization CA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 397-406.
    6. Coifman, Benjamin & Li, Lizhe, 2017. "A critical evaluation of the Next Generation Simulation (NGSIM) vehicle trajectory dataset," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 362-377.
    7. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    8. D. Helbing & M. Treiber & A. Kesting & M. Schönhof, 2009. "Theoretical vs. empirical classification and prediction of congested traffic states," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 69(4), pages 583-598, June.
    9. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    10. Jian-Xun Ding & Hai-Jun Huang, 2010. "A Cellular Automata Model Of Traffic Flow With Consideration Of The Inertial Driving Behavior," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 549-557.
    11. Cassidy, Michael J. & Windover, John R., 1998. "Driver memory: Motorist selection and retention of individualized headways in highway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(2), pages 129-137, February.
    12. Denos C. Gazis & Robert Herman & Renfrey B. Potts, 1959. "Car-Following Theory of Steady-State Traffic Flow," Operations Research, INFORMS, vol. 7(4), pages 499-505, August.
    13. Davis, L.C., 2003. "Modifications of the optimal velocity traffic model to include delay due to driver reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 557-567.
    14. Martin Schönhof & Dirk Helbing, 2007. "Empirical Features of Congested Traffic States and Their Implications for Traffic Modeling," Transportation Science, INFORMS, vol. 41(2), pages 135-166, May.
    15. Hwasoo Yeo & Alexander Skabardonis, 2009. "Understanding Stop-and-go Traffic in View of Asymmetric Traffic Theory," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 99-115, Springer.
    16. Daganzo, C. F. & Cassidy, M. J. & Bertini, R. L., 1999. "Possible explanations of phase transitions in highway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(5), pages 365-379, June.
    17. Laval, Jorge A., 2011. "Hysteresis in traffic flow revisited: An improved measurement method," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 385-391, February.
    18. Tordeux, Antoine & Lassarre, Sylvain & Roussignol, Michel, 2010. "An adaptive time gap car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1115-1131, September.
    19. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2010. "Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 983-1000, September.
    20. Pei, Xin & Pan, Yan & Wang, Haixin & Wong, S.C. & Choi, Keechoo, 2016. "Empirical evidence and stability analysis of the linear car-following model with gamma-distributed memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 311-323.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengcheng Fan & Jingqiu Guo & Haifeng Zhao & Jasper S. Wijnands & Yibing Wang, 2019. "Car-Following Modeling Incorporating Driving Memory Based on Autoencoder and Long Short-Term Memory Neural Networks," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    2. Yu, Lei, 2020. "A new continuum traffic flow model with two delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Li, Huamin & Jin, Shiyu, 2024. "Intelligent vehicle car-following model based on cyber physical system and its simulation under mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    4. Mostafa H. Tawfeek, 2024. "Inter- and Intra-Driver Reaction Time Heterogeneity in Car-Following Situations," Sustainability, MDPI, vol. 16(14), pages 1-16, July.
    5. Wen Huan Ai & Ming Ming Wang & Da Wei Liu, 2023. "Analysis of macroscopic traffic flow model considering throttle dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-18, June.
    6. Jiang, Wuhao & Wang, Kai & Lv, Yan & Guo, Jianfeng & Ni, Zhongjin & Ni, Yihua, 2020. "Time series based behavior pattern quantification analysis and prediction — A study on animal behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Wang, Zihao & Zhu, Wen-Xing, 2022. "Modeling and stability analysis of traffic flow considering electronic throttle dynamics on a curved road with slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.
    2. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    3. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    4. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    5. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    6. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    7. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    8. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    9. Wei, Dali & Liu, Hongchao, 2013. "Analysis of asymmetric driving behavior using a self-learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 1-14.
    10. Mohammadian, Saeed & Zheng, Zuduo & Haque, Mazharul & Bhaskar, Ashish, 2023. "NET-RAT: Non-equilibrium traffic model based on risk allostasis theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    11. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    12. Junfang Tian & Bin Jia & Shoufeng Ma & Chenqiang Zhu & Rui Jiang & YaoXian Ding, 2017. "Cellular Automaton Model with Dynamical 2D Speed-Gap Relation," Transportation Science, INFORMS, vol. 51(3), pages 807-822, August.
    13. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    14. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    15. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    16. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    17. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2020. "The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based control," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 58-83.
    18. Saifuzzaman, Mohammad & Zheng, Zuduo & Haque, Md. Mazharul & Washington, Simon, 2017. "Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 523-538.
    19. Michael Z. F. Li, 2008. "A Generic Characterization of Equilibrium Speed-Flow Curves," Transportation Science, INFORMS, vol. 42(2), pages 220-235, May.
    20. Zheng, Shi-Teng & Jiang, Rui & Tian, Jun-Fang & Zhang, H.M. & Li, Zhen-Hua & Gao, Lan-Da & Jia, Bin, 2021. "Experimental study on properties of lightly congested flow," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 1-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:786-795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.