FDST-GCN: A Fundamental Diagram based Spatiotemporal Graph Convolutional Network for expressway traffic forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2023.129173
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Okutani, Iwao & Stephanedes, Yorgos J., 1984. "Dynamic prediction of traffic volume through Kalman filtering theory," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 1-11, February.
- Beaudoin, Justin & Farzin, Y. Hossein & Lin Lawell, C.-Y. Cynthia, 2015. "Public transit investment and sustainable transportation: A review of studies of transit's impact on traffic congestion and air quality," Research in Transportation Economics, Elsevier, vol. 52(C), pages 15-22.
- Wang, Yibing & Papageorgiou, Markos, 2005. "Real-time freeway traffic state estimation based on extended Kalman filter: a general approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 141-167, February.
- Lu, Wenqi & Yi, Ziwei & Wu, Renfei & Rui, Yikang & Ran, Bin, 2022. "Traffic speed forecasting for urban roads: A deep ensemble neural network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shang, Ronghua & Li, Ruolin & Wang, Chi & Zhang, Weitong & Xu, Songhua & Feng, Dongzhu, 2024. "Node classification based on Attribute Fuse Edge Features and Label Adaptive Adjustment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
- Wang, Chen & Zhou, Dengji & Wang, Xiaoguo & Liu, Song & Shao, Tiemin & Shui, Chongyuan & Yan, Jun, 2024. "Multiscale graph based spatio-temporal graph convolutional network for energy consumption prediction of natural gas transmission process," Energy, Elsevier, vol. 307(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
- Wang, Chun & Zhang, Weihua & Wu, Cong & Hu, Heng & Ding, Heng & Zhu, Wenjia, 2022. "A traffic state recognition model based on feature map and deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
- Florin, Ryan & Olariu, Stephan, 2020. "Towards real-time density estimation using vehicle-to-vehicle communications," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 435-456.
- Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
- Gu, Tianqi & Xu, Weiping & Liang, Hua & He, Qing & Zheng, Nan, 2024. "School bus transport service strategies’ policy-making mechanism – An evolutionary game approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
- Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
- Kevin X. Li & Tae-Joon Park & Paul Tae-Woo Lee & Heather McLaughlin & Wenming Shi, 2018. "Container Transport Network for Sustainable Development in South Korea," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
- Hamilton, Timothy L. & Wichman, Casey J., 2018. "Bicycle infrastructure and traffic congestion: Evidence from DC's Capital Bikeshare," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 72-93.
- M. Bierlaire & F. Crittin, 2004. "An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables," Operations Research, INFORMS, vol. 52(1), pages 116-127, February.
- Morrison, Geoffrey M. & Lin Lawell, C.-Y. Cynthia, 2016. "Does employment growth increase travel time to work?: An empirical analysis using military troop movements," Regional Science and Urban Economics, Elsevier, vol. 60(C), pages 180-197.
- David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
- Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
- Daniel Albalate & Xavier Fageda, 2022. ""Have Low Emission Zones slowed urban traffic recovery after Covid-19?"," IREA Working Papers 202222, University of Barcelona, Research Institute of Applied Economics, revised Dec 2022.
- Pereira, Mike & Boyraz Baykas, Pinar & Kulcsár, Balázs & Lang, Annika, 2022. "Parameter and density estimation from real-world traffic data: A kinetic compartmental approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 210-239.
- Huayuan Chen & Zhizhe Lin & Yamin Yao & Hai Xie & Youyi Song & Teng Zhou, 2024. "Hybrid Extreme Learning for Reliable Short-Term Traffic Flow Forecasting," Mathematics, MDPI, vol. 12(20), pages 1-15, October.
- Jiasong Zhu & Anthony Gar-On Yeh, 2012. "A Self-Learning Short-Term Traffic Forecasting System," Environment and Planning B, , vol. 39(3), pages 471-485, June.
- Meina Zheng & Xiucheng Guo & Feng Liu & Jiayan Shen, 2021. "Contribution of Subway Expansions to Air Quality Improvement and the Corresponding Health Implications in Nanjing, China," IJERPH, MDPI, vol. 18(3), pages 1-19, January.
- Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
- Safikhani, Abolfazl & Kamga, Camille & Mudigonda, Sandeep & Faghih, Sabiheh Sadat & Moghimi, Bahman, 2020. "Spatio-temporal modeling of yellow taxi demands in New York City using generalized STAR models," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1138-1148.
- Nerhagen, Lena & Brandt, Daniel & Mortazavi, Reza, 2023. "Use of public transport as a means to reach national climate objectives - On the importance of accounting for spatial differences and costs," Transport Policy, Elsevier, vol. 131(C), pages 56-65.
More about this item
Keywords
Traffic forecasting; Expressway; Fundamental diagram; Auxiliary feature; Data fusion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123007288. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.