A Hybrid DNN Model for Travel Time Estimation from Spatio-Temporal Features
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shuming Sun & Juan Chen & Jian Sun, 2019. "Traffic congestion prediction based on GPS trajectory data," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
- Okutani, Iwao & Stephanedes, Yorgos J., 1984. "Dynamic prediction of traffic volume through Kalman filtering theory," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 1-11, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Amit Sharma & Ashutosh Sharma & Polina Nikashina & Vadim Gavrilenko & Alexey Tselykh & Alexander Bozhenyuk & Mehedi Masud & Hossam Meshref, 2023. "A Graph Neural Network (GNN)-Based Approach for Real-Time Estimation of Traffic Speed in Sustainable Smart Cities," Sustainability, MDPI, vol. 15(15), pages 1-25, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
- M. Bierlaire & F. Crittin, 2004. "An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables," Operations Research, INFORMS, vol. 52(1), pages 116-127, February.
- David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
- Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
- Jiasong Zhu & Anthony Gar-On Yeh, 2012. "A Self-Learning Short-Term Traffic Forecasting System," Environment and Planning B, , vol. 39(3), pages 471-485, June.
- Safikhani, Abolfazl & Kamga, Camille & Mudigonda, Sandeep & Faghih, Sabiheh Sadat & Moghimi, Bahman, 2020. "Spatio-temporal modeling of yellow taxi demands in New York City using generalized STAR models," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1138-1148.
- Zhang, Jie & Song, Chunyue & Cao, Shan & Zhang, Chun, 2023. "FDST-GCN: A Fundamental Diagram based Spatiotemporal Graph Convolutional Network for expressway traffic forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
- Hongxia Ge & Siteng Li & Rongjun Cheng & Zhenlei Chen, 2022. "Self-Attention ConvLSTM for Spatiotemporal Forecasting of Short-Term Online Car-Hailing Demand," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
- Lu, Xijin & Ma, Changxi & Qiao, Yihuan, 2021. "Short-term demand forecasting for online car-hailing using ConvLSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
- He, Yuxin & Zhao, Yang & Luo, Qin & Tsui, Kwok-Leung, 2022. "Forecasting nationwide passenger flows at city-level via a spatiotemporal deep learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
- Shenghan Zhou & Chaofan Wei & Chaofei Song & Yu Fu & Rui Luo & Wenbing Chang & Linchao Yang, 2022. "A Hybrid Deep Learning Model for Short-Term Traffic Flow Pre-Diction Considering Spatiotemporal Features," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
- Zhai, Linbo & Yang, Yong & Song, Shudian & Ma, Shuyue & Zhu, Xiumin & Yang, Feng, 2021. "Self-supervision Spatiotemporal Part-Whole Convolutional Neural Network for Traffic Prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
- Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
- Dia, Hussein, 2001. "An object-oriented neural network approach to short-term traffic forecasting," European Journal of Operational Research, Elsevier, vol. 131(2), pages 253-261, June.
- Alireza Ermagun & David M Levinson, 2019.
"Development and application of the network weight matrix to predict traffic flow for congested and uncongested conditions,"
Environment and Planning B, , vol. 46(9), pages 1684-1705, November.
- Alireza Ermagun & David Levinson, 2019. "Development and Application of the Network Weight Matrix to Predict Traffic Flow for Congested and Uncongested Conditions," Working Papers 2019-04, University of Minnesota: Nexus Research Group.
- Yildirimoglu, Mehmet & Geroliminis, Nikolas, 2013. "Experienced travel time prediction for congested freeways," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 45-63.
- Xia, Dong & Zheng, Linjiang & Tang, Yi & Cai, Xiaolin & Chen, Li & Sun, Dihua, 2022. "Dynamic traffic prediction for urban road network with the interpretable model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
- Lu, Wenqi & Yi, Ziwei & Wu, Renfei & Rui, Yikang & Ran, Bin, 2022. "Traffic speed forecasting for urban roads: A deep ensemble neural network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
- Huanyin Su & Shanglin Mo & Shuting Peng, 2023. "Short-Term Prediction of Time-Varying Passenger Flow for Intercity High-Speed Railways: A Neural Network Model Based on Multi-Source Data," Mathematics, MDPI, vol. 11(16), pages 1-16, August.
- Wei Zhou & Wei Wang & Xuedong Hua & Yi Zhang, 2020. "Real-Time Traffic Flow Forecasting via a Novel Method Combining Periodic-Trend Decomposition," Sustainability, MDPI, vol. 12(15), pages 1-23, July.
More about this item
Keywords
stacked autoencoder; spatio-temporal learning; graph neural network; residual blocks; hand-crafted feature map;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14049-:d:956226. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.