IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14049-d956226.html
   My bibliography  Save this article

A Hybrid DNN Model for Travel Time Estimation from Spatio-Temporal Features

Author

Listed:
  • Balaji Ganesh Rajagopal

    (Department of Computer Science and Engineering, SRM Institute of Science and Technology (SRMIST), Tiruchirappalli Campus, Tamil Nadu 621105, India)

  • Manish Kumar

    (Department of Civil Engineering, SRM Institute of Science and Technology (SRMIST), Tiruchirappalli Campus, Tamil Nadu 621105, India)

  • Pijush Samui

    (Department of Civil Engineering, NIT Patna, Bihar 800005, India)

  • Mosbeh R. Kaloop

    (Department of Civil and Environmental Engineering, Incheon National University, Incheon 22021, Korea
    Public Works and Civil Engineering Department, Mansoura University, Mansoura 35116, Egypt)

  • Usama Elrawy Shahdah

    (Public Works and Civil Engineering Department, Mansoura University, Mansoura 35116, Egypt)

Abstract

Due to recent advances in the Vehicular Internet of Things (VIoT), a large volume of traffic trajectory data has been generated. The trajectory data is highly unstructured and pre-processing it is a very cumbersome task, due to the complexity of the traffic data. However, the accuracy of traffic flow learning models depends on the quantity and quality of preprocessed data. Hence, there is a significant gap between the size and quality of benchmarked traffic datasets and the respective learning models. Additionally, generating a custom traffic dataset with required feature points in a constrained environment is very difficult. This research aims to harness the power of the deep learning hybrid model with datasets that have fewer feature points. Therefore, a hybrid deep learning model that extracts the optimal feature points from the existing dataset using a stacked autoencoder is presented. Handcrafted feature points are fed into the hybrid deep neural network to predict the travel path and travel time between two geographic points. The chengdu1 and chengdu2 standard reference datasets are used to realize our hypothesis of the evolution of a hybrid deep neural network with minimal feature points. The hybrid model includes the graph neural networks (GNN) and the residual networks (ResNet) preceded by the stacked autoencoder (SAE). This hybrid model simultaneously learns the temporal and spatial characteristics of the traffic data. Temporal feature points are optimally reduced using Stacked Autoencoder to improve the accuracy of the deep neural network. The proposed GNN + Resnet model performance was compared to models in the literature using root mean square error (RMSE) loss, mean absolute error (MAE) and mean absolute percentile error (MAPE). The proposed model was found to perform better by improving the travel time prediction loss on chengdu1 and chengdu2 datasets. An in-depth comprehension of the proposed GNN + Resnet model for predicting travel time during peak and off-peak periods is also presented. The model’s RMSE loss was improved up to 22.59% for peak hours traffic data and up to 11.05% for off-peak hours traffic data in the chengdu1 dataset.

Suggested Citation

  • Balaji Ganesh Rajagopal & Manish Kumar & Pijush Samui & Mosbeh R. Kaloop & Usama Elrawy Shahdah, 2022. "A Hybrid DNN Model for Travel Time Estimation from Spatio-Temporal Features," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14049-:d:956226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14049/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14049/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuming Sun & Juan Chen & Jian Sun, 2019. "Traffic congestion prediction based on GPS trajectory data," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
    2. Okutani, Iwao & Stephanedes, Yorgos J., 1984. "Dynamic prediction of traffic volume through Kalman filtering theory," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amit Sharma & Ashutosh Sharma & Polina Nikashina & Vadim Gavrilenko & Alexey Tselykh & Alexander Bozhenyuk & Mehedi Masud & Hossam Meshref, 2023. "A Graph Neural Network (GNN)-Based Approach for Real-Time Estimation of Traffic Speed in Sustainable Smart Cities," Sustainability, MDPI, vol. 15(15), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
    2. M. Bierlaire & F. Crittin, 2004. "An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables," Operations Research, INFORMS, vol. 52(1), pages 116-127, February.
    3. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    4. Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    5. Jiasong Zhu & Anthony Gar-On Yeh, 2012. "A Self-Learning Short-Term Traffic Forecasting System," Environment and Planning B, , vol. 39(3), pages 471-485, June.
    6. Safikhani, Abolfazl & Kamga, Camille & Mudigonda, Sandeep & Faghih, Sabiheh Sadat & Moghimi, Bahman, 2020. "Spatio-temporal modeling of yellow taxi demands in New York City using generalized STAR models," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1138-1148.
    7. Zhang, Jie & Song, Chunyue & Cao, Shan & Zhang, Chun, 2023. "FDST-GCN: A Fundamental Diagram based Spatiotemporal Graph Convolutional Network for expressway traffic forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    8. Hongxia Ge & Siteng Li & Rongjun Cheng & Zhenlei Chen, 2022. "Self-Attention ConvLSTM for Spatiotemporal Forecasting of Short-Term Online Car-Hailing Demand," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    9. Lu, Xijin & Ma, Changxi & Qiao, Yihuan, 2021. "Short-term demand forecasting for online car-hailing using ConvLSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    10. He, Yuxin & Zhao, Yang & Luo, Qin & Tsui, Kwok-Leung, 2022. "Forecasting nationwide passenger flows at city-level via a spatiotemporal deep learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    11. Shenghan Zhou & Chaofan Wei & Chaofei Song & Yu Fu & Rui Luo & Wenbing Chang & Linchao Yang, 2022. "A Hybrid Deep Learning Model for Short-Term Traffic Flow Pre-Diction Considering Spatiotemporal Features," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    12. Zhai, Linbo & Yang, Yong & Song, Shudian & Ma, Shuyue & Zhu, Xiumin & Yang, Feng, 2021. "Self-supervision Spatiotemporal Part-Whole Convolutional Neural Network for Traffic Prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    13. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    14. Dia, Hussein, 2001. "An object-oriented neural network approach to short-term traffic forecasting," European Journal of Operational Research, Elsevier, vol. 131(2), pages 253-261, June.
    15. Alireza Ermagun & David M Levinson, 2019. "Development and application of the network weight matrix to predict traffic flow for congested and uncongested conditions," Environment and Planning B, , vol. 46(9), pages 1684-1705, November.
    16. Yildirimoglu, Mehmet & Geroliminis, Nikolas, 2013. "Experienced travel time prediction for congested freeways," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 45-63.
    17. Xia, Dong & Zheng, Linjiang & Tang, Yi & Cai, Xiaolin & Chen, Li & Sun, Dihua, 2022. "Dynamic traffic prediction for urban road network with the interpretable model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    18. Lu, Wenqi & Yi, Ziwei & Wu, Renfei & Rui, Yikang & Ran, Bin, 2022. "Traffic speed forecasting for urban roads: A deep ensemble neural network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    19. Huanyin Su & Shanglin Mo & Shuting Peng, 2023. "Short-Term Prediction of Time-Varying Passenger Flow for Intercity High-Speed Railways: A Neural Network Model Based on Multi-Source Data," Mathematics, MDPI, vol. 11(16), pages 1-16, August.
    20. Wei Zhou & Wei Wang & Xuedong Hua & Yi Zhang, 2020. "Real-Time Traffic Flow Forecasting via a Novel Method Combining Periodic-Trend Decomposition," Sustainability, MDPI, vol. 12(15), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14049-:d:956226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.