IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i20p3303-d1503485.html
   My bibliography  Save this article

Hybrid Extreme Learning for Reliable Short-Term Traffic Flow Forecasting

Author

Listed:
  • Huayuan Chen

    (Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China)

  • Zhizhe Lin

    (School of Cyberspace Security, Hainan University, Haikou 570228, China)

  • Yamin Yao

    (Department of Computer Science, Shantou University, Shantou 515063, China)

  • Hai Xie

    (School of Cyberspace Security, Hainan University, Haikou 570228, China)

  • Youyi Song

    (Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China)

  • Teng Zhou

    (Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
    School of Cyberspace Security, Hainan University, Haikou 570228, China
    Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou 324003, China)

Abstract

Reliable forecasting of short-term traffic flow is an essential component of modern intelligent transport systems. However, existing methods fail to deal with the non-linear nature of short-term traffic flow, often making the forecasting unreliable. Herein, we propose a reliable short-term traffic flow forecasting method, termed hybrid extreme learning, that effectively learns the non-linear representation of traffic flow, boosting forecasting reliability. This new algorithm probes the non-linear nature of short-term traffic data by exploiting the artificial bee colony that selects the best-implied layer deviation and input weight matrix to enhance the multi-structural information perception capability. It speeds up the forecasting time by calculating the output weight matrix, which guarantees the real usage of the forecasting method, boosting the time reliability. We extensively evaluate the proposed hybrid extreme learning method on well-known short-term traffic flow forecasting datasets. The experimental results show that our method outperforms existing methods by a large margin in both forecasting accuracy and time, effectively demonstrating the reliability improvement of the proposed method. This reliable method may open the avenue of deep learning techniques in short-term traffic flow forecasting in real scenarios.

Suggested Citation

  • Huayuan Chen & Zhizhe Lin & Yamin Yao & Hai Xie & Youyi Song & Teng Zhou, 2024. "Hybrid Extreme Learning for Reliable Short-Term Traffic Flow Forecasting," Mathematics, MDPI, vol. 12(20), pages 1-15, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:20:p:3303-:d:1503485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/20/3303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/20/3303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenbao Zeng & Ketong Wang & Jianghua Zhou & Rongjun Cheng, 2023. "Traffic Flow Prediction Based on Hybrid Deep Learning Models Considering Missing Data and Multiple Factors," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    2. Okutani, Iwao & Stephanedes, Yorgos J., 1984. "Dynamic prediction of traffic volume through Kalman filtering theory," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 1-11, February.
    3. Hu, Guojing & Whalin, Robert W. & Kwembe, Tor A. & Lu, Weike, 2023. "Short-term traffic flow prediction based on secondary hybrid decomposition and deep echo state networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
    2. M. Bierlaire & F. Crittin, 2004. "An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables," Operations Research, INFORMS, vol. 52(1), pages 116-127, February.
    3. Safikhani, Abolfazl & Kamga, Camille & Mudigonda, Sandeep & Faghih, Sabiheh Sadat & Moghimi, Bahman, 2020. "Spatio-temporal modeling of yellow taxi demands in New York City using generalized STAR models," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1138-1148.
    4. Balaji Ganesh Rajagopal & Manish Kumar & Pijush Samui & Mosbeh R. Kaloop & Usama Elrawy Shahdah, 2022. "A Hybrid DNN Model for Travel Time Estimation from Spatio-Temporal Features," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    5. Lu, Xijin & Ma, Changxi & Qiao, Yihuan, 2021. "Short-term demand forecasting for online car-hailing using ConvLSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    6. Shenghan Zhou & Chaofan Wei & Chaofei Song & Yu Fu & Rui Luo & Wenbing Chang & Linchao Yang, 2022. "A Hybrid Deep Learning Model for Short-Term Traffic Flow Pre-Diction Considering Spatiotemporal Features," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    7. Zhai, Linbo & Yang, Yong & Song, Shudian & Ma, Shuyue & Zhu, Xiumin & Yang, Feng, 2021. "Self-supervision Spatiotemporal Part-Whole Convolutional Neural Network for Traffic Prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    8. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    9. Xia, Dong & Zheng, Linjiang & Tang, Yi & Cai, Xiaolin & Chen, Li & Sun, Dihua, 2022. "Dynamic traffic prediction for urban road network with the interpretable model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    10. Lu, Wenqi & Yi, Ziwei & Wu, Renfei & Rui, Yikang & Ran, Bin, 2022. "Traffic speed forecasting for urban roads: A deep ensemble neural network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    11. Cantelmo, Guido & Qurashi, Moeid & Prakash, A. Arun & Antoniou, Constantinos & Viti, Francesco, 2020. "Incorporating trip chaining within online demand estimation," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 171-187.
    12. Lederman, Roger & Wynter, Laura, 2011. "Real-time traffic estimation using data expansion," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1062-1079, August.
    13. Zhou, Xuesong & Mahmassani, Hani S., 2007. "A structural state space model for real-time traffic origin-destination demand estimation and prediction in a day-to-day learning framework," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 823-840, October.
    14. Hu, Guojing & Whalin, Robert W. & Kwembe, Tor A. & Lu, Weike, 2023. "Short-term traffic flow prediction based on secondary hybrid decomposition and deep echo state networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    15. Zhao, Jiandong & Yu, Zhixin & Yang, Xin & Gao, Ziyou & Liu, Wenhui, 2022. "Short term traffic flow prediction of expressway service area based on STL-OMS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    16. Wang, Wei & Zhang, Hanyu & Li, Tong & Guo, Jianhua & Huang, Wei & Wei, Yun & Cao, Jinde, 2020. "An interpretable model for short term traffic flow prediction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 264-278.
    17. Min Li & Mengshan Li & Bilong Liu & Jiang Liu & Zhen Liu & Dijia Luo, 2022. "Spatio-Temporal Traffic Flow Prediction Based on Coordinated Attention," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    18. Alireza Ermagun & David Levinson, 2017. "Spatiotemporal Short-term Traffic Forecasting using the Network Weight Matrix and Systematic Detrending," Working Papers 000166, University of Minnesota: Nexus Research Group.
    19. Zhao, Ke & Guo, Dudu & Sun, Miao & Zhao, Chenao & Shuai, Hongbo & Shao, Chunfu, 2024. "Short-term traffic flow prediction based on hybrid decomposition optimization and deep extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 647(C).
    20. Zhanzhong Wang & Ruijuan Chu & Minghang Zhang & Xiaochao Wang & Siliang Luan, 2020. "An Improved Hybrid Highway Traffic Flow Prediction Model Based on Machine Learning," Sustainability, MDPI, vol. 12(20), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:20:p:3303-:d:1503485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.