IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/11786.html
   My bibliography  Save this paper

The Stability of Downtown Parking and Traffic Congestion

Author

Listed:
  • Arnott, Richard
  • Inci, Eren

Abstract

In classical traffic flow theory, there are two velocities associated with a given level of traffic flow. Following Vickrey, economists have termed travel at the higher speed congested travel and at the lower speed hypercongested travel. Since the publication of Walters' classic paper (1961, Econometrica 29, 676-699), there has been an on-going debate concerning whether a steady-state hypercongested equilibrium can be stable. For a particular structural model of downtown traffic flow and parking, this paper demonstrates that a steady-state hypercongested equilibrium can be stable. Some other sensible models of traffic congestion conclude that steady-state hypercongested travel cannot be stable, and that queues develop to ration the demand in steady states. Thus, we interpret our result to imply that, when steady-state demand is so high that it cannot be rationed through congested travel, the trip price increase necessary to ration the demand may be generated either through the formation of steady-state queues or through hypercongested travel, and that which mechanism occurs depends on details of the traffic system.

Suggested Citation

  • Arnott, Richard & Inci, Eren, 2008. "The Stability of Downtown Parking and Traffic Congestion," MPRA Paper 11786, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:11786
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/11786/1/MPRA_paper_11786.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Small, Kenneth A. & Gomez-Ibanez, Jose A., 1999. "Urban transportation," Handbook of Regional and Urban Economics, in: P. C. Cheshire & E. S. Mills (ed.), Handbook of Regional and Urban Economics, edition 1, volume 3, chapter 46, pages 1937-1999, Elsevier.
    2. Kenneth A. Small & Xuehao Chu, 2003. "Hypercongestion," Journal of Transport Economics and Policy, University of Bath, vol. 37(3), pages 319-352, September.
    3. Daganzo, Carlos, 1992. "The Cell Transmission Model. Part I: A Simple Dynamic Representation Of Highway Traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0b6612tk, Institute of Transportation Studies, UC Berkeley.
    4. Arnott, Richard & Inci, Eren, 2006. "An integrated model of downtown parking and traffic congestion," Journal of Urban Economics, Elsevier, vol. 60(3), pages 418-442, November.
    5. Verhoef, Erik T., 2005. "Speed-flow relations and cost functions for congested traffic: Theory and empirical analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 792-812.
    6. Verhoef, Erik T., 1999. "Time, speeds, flows and densities in static models of road traffic congestion and congestion pricing," Regional Science and Urban Economics, Elsevier, vol. 29(3), pages 341-369, May.
    7. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part II: Merges and the onset of congestion," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 159-169, February.
    8. Arnott, Richard, 2006. "Spatial competition between parking garages and downtown parking policy," Transport Policy, Elsevier, vol. 13(6), pages 458-469, November.
    9. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    10. Erik T. Verhoef, 2002. "Inside the Queue," Tinbergen Institute Discussion Papers 02-062/3, Tinbergen Institute, revised 27 May 2003.
    11. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    12. Daganzo, C. F. & Cassidy, M. J. & Bertini, R. L., 1999. "Possible explanations of phase transitions in highway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(5), pages 365-379, June.
    13. Verhoef, Erik T., 2003. "Inside the queue:: hypercongestion and road pricing in a continuous time-continuous place model of traffic congestion," Journal of Urban Economics, Elsevier, vol. 54(3), pages 531-565, November.
    14. Dewees, Donald N, 1979. "Estimating the Time Costs of Highway Congestion," Econometrica, Econometric Society, vol. 47(6), pages 1499-1512, November.
    15. Arnott, Richard & Rowse, John, 2009. "Downtown parking in auto city," Regional Science and Urban Economics, Elsevier, vol. 39(1), pages 1-14, January.
    16. Arnott, Richard & Rowse, John, 1999. "Modeling Parking," Journal of Urban Economics, Elsevier, vol. 45(1), pages 97-124, January.
    17. Henderson, J. Vernon, 1981. "The economics of staggered work hours," Journal of Urban Economics, Elsevier, vol. 9(3), pages 349-364, May.
    18. Lo, Hong K. & Szeto, W.Y., 2005. "Road pricing modeling for hyper-congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 705-722.
    19. Verhoef, Erik T., 2001. "An Integrated Dynamic Model of Road Traffic Congestion Based on Simple Car-Following Theory: Exploring Hypercongestion," Journal of Urban Economics, Elsevier, vol. 49(3), pages 505-542, May.
    20. McDonald, John F. & d'Ouville, Edmond L., 1988. "Highway traffic flow and the uneconomic region of production," Regional Science and Urban Economics, Elsevier, vol. 18(4), pages 503-509, November.
    21. Chu Xuehao, 1995. "Endogenous Trip Scheduling: The Henderson Approach Reformulated and Compared with the Vickrey Approach," Journal of Urban Economics, Elsevier, vol. 37(3), pages 324-343, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnott, Richard, 2013. "A bathtub model of downtown traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 110-121.
    2. Tsekeris, Theodore & Geroliminis, Nikolas, 2013. "City size, network structure and traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 1-14.
    3. Bao, Yue & Verhoef, Erik T. & Koster, Paul, 2021. "Leaving the tub: The nature and dynamics of hypercongestion in a bathtub model with a restricted downstream exit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Arnott, Richard & Rowse, John, 2009. "Downtown parking in auto city," Regional Science and Urban Economics, Elsevier, vol. 39(1), pages 1-14, January.
    5. Amer, Ahmed & Chow, Joseph Y.J., 2017. "A downtown on-street parking model with urban truck delivery behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 51-67.
    6. Kenneth A. Small & Xuehao Chu, 2003. "Hypercongestion," Journal of Transport Economics and Policy, University of Bath, vol. 37(3), pages 319-352, September.
    7. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    8. Kevin Hasker & Eren Inci, 2014. "Free Parking For All In Shopping Malls," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(4), pages 1281-1304, November.
    9. Fosgerau, Mogens & de Palma, André, 2013. "The dynamics of urban traffic congestion and the price of parking�," MPRA Paper 48433, University Library of Munich, Germany.
    10. Fosgerau, Mogens & de Palma, André, 2013. "The dynamics of urban traffic congestion and the price of parking," Journal of Public Economics, Elsevier, vol. 105(C), pages 106-115.
    11. Inci, Eren, 2015. "A review of the economics of parking," Economics of Transportation, Elsevier, vol. 4(1), pages 50-63.
    12. Frascaria, Dario & Olver, Neil & Verhoef, Erik, 2020. "Emergent hypercongestion in Vickrey bottleneck networks," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 523-538.
    13. Antonio Russo & Martin W. Adler & Federica Liberini & Jos N. van Ommeren, 2019. "Welfare Losses of Road Congestion," CESifo Working Paper Series 7693, CESifo.
    14. Geroliminis, Nikolas, 2015. "Cruising-for-parking in congested cities with an MFD representation," Economics of Transportation, Elsevier, vol. 4(3), pages 156-165.
    15. Zheng, Nan & Geroliminis, Nikolas, 2016. "Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 36-58.
    16. Verhoef, Erik T., 1999. "Time, speeds, flows and densities in static models of road traffic congestion and congestion pricing," Regional Science and Urban Economics, Elsevier, vol. 29(3), pages 341-369, May.
    17. De Borger, Bruno & Russo, Antonio, 2017. "The political economy of pricing car access to downtown commercial districts," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 76-93.
    18. Verhoef, Erik T., 2005. "Speed-flow relations and cost functions for congested traffic: Theory and empirical analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 792-812.
    19. Inci, Eren & Lindsey, Robin, 2015. "Garage and curbside parking competition with search congestion," Regional Science and Urban Economics, Elsevier, vol. 54(C), pages 49-59.
    20. Arnott, Richard & Rowse, John, 2013. "Curbside parking time limits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 89-110.

    More about this item

    Keywords

    traffic congestion; cruising for parking; on-street parking; hypercongestion;
    All these keywords.

    JEL classification:

    • L91 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Transportation: General
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:11786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.