IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/50-17.html
   My bibliography  Save this paper

Best subset binary prediction

Author

Listed:
  • Le-Yu Chen

    (Institute for Fiscal Studies and Academia Sinica)

  • Sokbae (Simon) Lee

    (Institute for Fiscal Studies and Columbia University)

Abstract

We consider a variable selection problem for the prediction of binary outcomes. We study the best subset selection procedure by which the explanatory variables are chosen by maximizing Manski (1975, 1985)'s maximum score type objective function subject to a constraint on the maximal number of selected variables. We show that this procedure can be equivalently reformulated as solving a mixed integer optimization (MIO) problem, which enables computation of the exact or an approximate solution with a de finite approximation error bound. In terms of theoretical results, we obtain non-asymptotic upper and lower risk bounds when the dimension of potential covariates is possibly much larger than the sample size. Our upper and lower risk bounds are minimax rate-optimal when the maximal number of selected variables is fi xed and does not increase with the sample size. We illustrate usefulness of the best subset binary prediction approach via Monte Carlo simulations and an empirical application of the work-trip transportation mode choice.

Suggested Citation

  • Le-Yu Chen & Sokbae (Simon) Lee, 2017. "Best subset binary prediction," CeMMAP working papers CWP50/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:50/17
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/CWP501717.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thierry Magnac & Eric Maurin, 2008. "Partial Identification in Monotone Binary Models: Discrete Regressors and Interval Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(3), pages 835-864.
    2. de Jong, Robert M. & Woutersen, Tiemen, 2011. "Dynamic Time Series Binary Choice," Econometric Theory, Cambridge University Press, vol. 27(4), pages 673-702, August.
    3. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    4. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    5. Jeremy T. Fox, 2007. "Semiparametric estimation of multinomial discrete-choice models using a subset of choices," RAND Journal of Economics, RAND Corporation, vol. 38(4), pages 1002-1019, December.
    6. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    7. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    8. Chen, Songnian, 2010. "An integrated maximum score estimator for a generalized censored quantile regression model," Journal of Econometrics, Elsevier, vol. 155(1), pages 90-98, March.
    9. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-362, March.
    10. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    11. Elliott, Graham & Lieli, Robert P., 2013. "Predicting binary outcomes," Journal of Econometrics, Elsevier, vol. 174(1), pages 15-26.
    12. Jason R. Blevins & Shakeeb Khan, 2013. "Local NLLS estimation of semi‐parametric binary choice models," Econometrics Journal, Royal Economic Society, vol. 16(2), pages 135-160, June.
    13. Le‐Yu Chen & Sokbae Lee & Myung Jae Sung, 2014. "Maximum score estimation with nonparametrically generated regressors," Econometrics Journal, Royal Economic Society, vol. 17(3), pages 271-300, October.
    14. Lieli, Robert P. & Nieto-Barthaburu, Augusto, 2010. "Optimal Binary Prediction for Group Decision Making," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 308-319.
    15. Manski, Charles F. & Thompson, T. Scott, 1986. "Operational characteristics of maximum score estimation," Journal of Econometrics, Elsevier, vol. 32(1), pages 85-108, June.
    16. Khan, Shakeeb, 2013. "Distribution free estimation of heteroskedastic binary response models using Probit/Logit criterion functions," Journal of Econometrics, Elsevier, vol. 172(1), pages 168-182.
    17. Jun, Sung Jae & Pinkse, Joris & Wan, Yuanyuan, 2017. "Integrated Score Estimation," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1418-1456, December.
    18. Jiang, Wenxin & Tanner, Martin A., 2010. "Risk Minimization For Time Series Binary Choice With Variable Selection," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1437-1452, October.
    19. Lee, Sokbae & Seo, Myung Hwan, 2008. "Semiparametric estimation of a binary response model with a change-point due to a covariate threshold," Journal of Econometrics, Elsevier, vol. 144(2), pages 492-499, June.
    20. Matzkin, Rosa L., 1993. "Nonparametric identification and estimation of polychotomous choice models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 137-168, July.
    21. Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
    22. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    23. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    24. Robert P. Lieli & Michael Springborn, 2013. "Closing the Gap between Risk Estimation and Decision Making: Efficient Management of Trade-Related Invasive Species Risk," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 632-645, May.
    25. Jason Abrevaya & Jian Huang, 2005. "On the Bootstrap of the Maximum Score Estimator," Econometrica, Econometric Society, vol. 73(4), pages 1175-1204, July.
    26. E. Charlier & B. Melenberg & A. H. O. van Soest, 1995. "A smoothed maximum score estimator for the binary choice panel data model with an application to labour force participation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 49(3), pages 324-342, November.
    27. Bryan S. Graham, 2016. "Homophily and transitivity in dynamic network formation," CeMMAP working papers CWP16/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    28. Guerre, Emmanuel & Moon, Hyungsik Roger, 2006. "A Study Of A Semiparametric Binary Choice Model With Integrated Covariates," Econometric Theory, Cambridge University Press, vol. 22(4), pages 721-742, August.
    29. Horowitz, Joel L., 1993. "Semiparametric estimation of a work-trip mode choice model," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 49-70, July.
    30. Jan R. Magnus & J. Durbin, 1999. "Estimation of Regression Coefficients of Interest When Other Regression Coefficients Are of No Interest," Econometrica, Econometric Society, vol. 67(3), pages 639-644, May.
    31. Lieli, Robert P. & White, Halbert, 2010. "The construction of empirical credit scoring rules based on maximization principles," Journal of Econometrics, Elsevier, vol. 157(1), pages 110-119, July.
    32. Manski, Charles F. & Thompson, T. Scott, 1989. "Estimation of best predictors of binary response," Journal of Econometrics, Elsevier, vol. 40(1), pages 97-123, January.
    33. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    34. Dries F. Benoit & Dirk Van den Poel, 2012. "Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1174-1188, November.
    35. Jason R. Blevins & Shakeeb Khan, 2013. "Distribution-free estimation of heteroskedastic binary response models in Stata," Stata Journal, StataCorp LP, vol. 13(3), pages 588-602, September.
    36. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    37. Chen, Songnian & Zhang, Hanghui, 2015. "Binary quantile regression with local polynomial smoothing," Journal of Econometrics, Elsevier, vol. 189(1), pages 24-40.
    38. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    39. Lee, Stephen M.S. & Pun, M.C., 2006. "On m out of n Bootstrapping for Nonstandard M-Estimation With Nuisance Parameters," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1185-1197, September.
    40. Pinkse, C. A. P., 1993. "On the computation of semiparametric estimates in limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 185-205, July.
    41. Lee, Sokbae & Seo, Myung Hwan & Shin, Youngki, 2011. "Testing for Threshold Effects in Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 220-231.
    42. Abrevaya, Jason, 2000. "Rank estimation of a generalized fixed-effects regression model," Journal of Econometrics, Elsevier, vol. 95(1), pages 1-23, March.
    43. Horowitz, Joel L., 2002. "Bootstrap critical values for tests based on the smoothed maximum score estimator," Journal of Econometrics, Elsevier, vol. 111(2), pages 141-167, December.
    44. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    45. Jun, Sung Jae & Pinkse, Joris & Wan, Yuanyuan, 2015. "Classical Laplace estimation for n3-consistent estimators: Improved convergence rates and rate-adaptive inference," Journal of Econometrics, Elsevier, vol. 187(1), pages 201-216.
    46. Danilov, Dmitry & Magnus, J.R.Jan R., 2004. "On the harm that ignoring pretesting can cause," Journal of Econometrics, Elsevier, vol. 122(1), pages 27-46, September.
    47. Moon, Hyungsik Roger, 2004. "Maximum score estimation of a nonstationary binary choice model," Journal of Econometrics, Elsevier, vol. 122(2), pages 385-403, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le‐Yu Chen & Sokbae Lee, 2018. "Exact computation of GMM estimators for instrumental variable quantile regression models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 553-567, June.
    2. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    3. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    4. Max Tabord-Meehan, 2023. "Stratification Trees for Adaptive Randomisation in Randomised Controlled Trials," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(5), pages 2646-2673.
    5. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    6. Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
    7. Chen, Le-Yu & Lee, Sokbae, 2023. "Sparse quantile regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 2195-2217.
    8. Youngki Shin & Zvezdomir Todorov, 2021. "Exact computation of maximum rank correlation estimator," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 589-607.
    9. Adam M. Rosen & Takuya Ura, 2019. "Finite Sample Inference for the Maximum Score Estimand," Papers 1903.01511, arXiv.org, revised May 2020.
    10. Jiun-Hua Su, 2021. "No-Regret Forecasting with Egalitarian Committees," Papers 2109.13801, arXiv.org.
    11. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2022. "Robust Ranking of Happiness Outcomes: A Median Regression Perspective," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 672-686.
    12. Davide Viviano & Jelena Bradic, 2020. "Fair Policy Targeting," Papers 2005.12395, arXiv.org, revised Jun 2022.
    13. Jiun-Hua Su, 2019. "Model Selection in Utility-Maximizing Binary Prediction," Papers 1903.00716, arXiv.org, revised Jul 2020.
    14. Bilias, Yannis & Florios, Kostas & Skouras, Spyros, 2019. "Exact computation of Censored Least Absolute Deviations estimator," Journal of Econometrics, Elsevier, vol. 212(2), pages 584-606.
    15. Le-Yu Chen & Sokbae Lee, 2018. "High Dimensional Classification through $\ell_0$-Penalized Empirical Risk Minimization," Papers 1811.09540, arXiv.org.
    16. Su, Jiun-Hua, 2021. "Model selection in utility-maximizing binary prediction," Journal of Econometrics, Elsevier, vol. 223(1), pages 96-124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Songnian & Zhang, Hanghui, 2015. "Binary quantile regression with local polynomial smoothing," Journal of Econometrics, Elsevier, vol. 189(1), pages 24-40.
    2. Jeremy T. Fox, 2018. "Estimating matching games with transfers," Quantitative Economics, Econometric Society, vol. 9(1), pages 1-38, March.
    3. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    4. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    5. Sadikoglu, Serhan, 2019. "Essays in econometric theory," Other publications TiSEM 99d83644-f9dc-49e3-a4e1-5, Tilburg University, School of Economics and Management.
    6. Adam M. Rosen & Takuya Ura, 2019. "Finite Sample Inference for the Maximum Score Estimand," Papers 1903.01511, arXiv.org, revised May 2020.
    7. D. F. Benoit & D. Van Den Poel, 2010. "Binary quantile regression: A Bayesian approach based on the asymmetric Laplace density," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/662, Ghent University, Faculty of Economics and Business Administration.
    8. Wan, Yuanyuan & Xu, Haiqing, 2015. "Inference in semiparametric binary response models with interval data," Journal of Econometrics, Elsevier, vol. 184(2), pages 347-360.
    9. Florios, Kostas, 2018. "A hyperplanes intersection simulated annealing algorithm for maximum score estimation," Econometrics and Statistics, Elsevier, vol. 8(C), pages 37-55.
    10. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2022. "Robust Ranking of Happiness Outcomes: A Median Regression Perspective," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 672-686.
    11. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    12. William Greene, 2007. "Discrete Choice Modeling," Working Papers 07-6, New York University, Leonard N. Stern School of Business, Department of Economics.
    13. Lee, Sokbae & Seo, Myung Hwan, 2008. "Semiparametric estimation of a binary response model with a change-point due to a covariate threshold," Journal of Econometrics, Elsevier, vol. 144(2), pages 492-499, June.
    14. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    15. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2019. "Have Econometric Analyses of Happiness Data Been Futile? A Simple Truth about Happiness Scales," IZA Discussion Papers 12152, Institute of Labor Economics (IZA).
    16. Le‐Yu Chen & Sokbae Lee & Myung Jae Sung, 2014. "Maximum score estimation with nonparametrically generated regressors," Econometrics Journal, Royal Economic Society, vol. 17(3), pages 271-300, October.
    17. Yan, Jin & Yoo, Hong Il, 2019. "Semiparametric estimation of the random utility model with rank-ordered choice data," Journal of Econometrics, Elsevier, vol. 211(2), pages 414-438.
    18. Taisuke Otsu & Myung Hwan Seo, 2014. "Asymptotics for maximum score method under general conditions," STICERD - Econometrics Paper Series 571, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    19. repec:cep:stiecm:em/2012/559 is not listed on IDEAS
    20. Chen, Songnian & Khan, Shakeeb & Tang, Xun, 2016. "Informational content of special regressors in heteroskedastic binary response models," Journal of Econometrics, Elsevier, vol. 193(1), pages 162-182.
    21. Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.

    More about this item

    Keywords

    binary choice; maximum score estimation; best subset selection; `0-constrained maximization; mixed integer optimization; minimax optimality; fi nite sample property;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:50/17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.