IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v211y2019i2p414-438.html
   My bibliography  Save this article

Semiparametric estimation of the random utility model with rank-ordered choice data

Author

Listed:
  • Yan, Jin
  • Yoo, Hong Il

Abstract

We propose semiparametric methods for estimating random utility models using rank-ordered choice data. Our primary method is the generalized maximum score (GMS) estimator. With partially rank-ordered data, the GMS estimator allows for arbitrary forms of interpersonal heteroskedasticity. With fully rank-ordered data, the GMS estimator becomes considerably more flexible, allowing for random coefficients and alternative-specific heteroskedasticity and correlations. The GMS estimator has a non-standard asymptotic distribution and a convergence rate of N−1∕3. We proceed to construct its smoothed version which is asymptotically normal with a faster convergence rate of N−d∕(2d+1), where d≥2 increases in the strength of smoothness assumptions.

Suggested Citation

  • Yan, Jin & Yoo, Hong Il, 2019. "Semiparametric estimation of the random utility model with rank-ordered choice data," Journal of Econometrics, Elsevier, vol. 211(2), pages 414-438.
  • Handle: RePEc:eee:econom:v:211:y:2019:i:2:p:414-438
    DOI: 10.1016/j.jeconom.2019.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407619300521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2019.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yoo, Hong Il & Doiron, Denise, 2013. "The use of alternative preference elicitation methods in complex discrete choice experiments," Journal of Health Economics, Elsevier, vol. 32(6), pages 1166-1179.
    2. Ruud, Paul A., 1986. "Consistent estimation of limited dependent variable models despite misspecification of distribution," Journal of Econometrics, Elsevier, vol. 32(1), pages 157-187, June.
    3. Anna Conte & John D. Hey & Peter G. Moffatt, 2018. "Mixture models of choice under risk," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 1, pages 3-12, World Scientific Publishing Co. Pte. Ltd..
    4. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    5. Glenn Harrison & E. Rutström, 2009. "Expected utility theory and prospect theory: one wedding and a decent funeral," Experimental Economics, Springer;Economic Science Association, vol. 12(2), pages 133-158, June.
    6. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
    7. Jeremy T. Fox, 2007. "Semiparametric estimation of multinomial discrete-choice models using a subset of choices," RAND Journal of Economics, RAND Corporation, vol. 38(4), pages 1002-1019, December.
    8. Daniel McFadden, 1986. "The Choice Theory Approach to Market Research," Marketing Science, INFORMS, vol. 5(4), pages 275-297.
    9. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    10. Hausman, Jerry A. & Ruud, Paul A., 1987. "Specifying and testing econometric models for rank-ordered data," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 83-104.
    11. McCabe, Christopher & Brazier, John & Gilks, Peter & Tsuchiya, Aki & Roberts, Jennifer & O'Hagan, Anthony & Stevens, Katherine, 2006. "Using rank data to estimate health state utility models," Journal of Health Economics, Elsevier, vol. 25(3), pages 418-431, May.
    12. Layton, David F., 2000. "Random Coefficient Models for Stated Preference Surveys," Journal of Environmental Economics and Management, Elsevier, vol. 40(1), pages 21-36, July.
    13. Kenneth A. Small & Clifford Winston & Jia Yan, 2005. "Uncovering the Distribution of Motorists' Preferences for Travel Time and Reliability," Econometrica, Econometric Society, vol. 73(4), pages 1367-1382, July.
    14. Siikamaki, Juha & Layton, David F., 2007. "Discrete choice survey experiments: A comparison using flexible methods," Journal of Environmental Economics and Management, Elsevier, vol. 53(1), pages 122-139, January.
    15. Lee, Lung-fei, 1995. "Semiparametric maximum likelihood estimation of polychotomous and sequential choice models," Journal of Econometrics, Elsevier, vol. 65(2), pages 381-428, February.
    16. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    17. Dennis Fok & Richard Paap & Bram Van Dijk, 2012. "A Rank‐Ordered Logit Model With Unobserved Heterogeneity In Ranking Capabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 831-846, August.
    18. José L. Oviedo & Hong Il Yoo, 2017. "A Latent Class Nested Logit Model for Rank-Ordered Data with Application to Cork Oak Reforestation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1021-1051, December.
    19. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    20. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    21. Barbera, Salvador & Pattanaik, Prasanta K, 1986. "Falmagne and the Rationalizability of Stochastic Choices in Terms of Random Orderings," Econometrica, Econometric Society, vol. 54(3), pages 707-715, May.
    22. Layton, David F. & Levine, Richard A., 2003. "How Much Does the Far Future Matter? A Hierarchical Bayesian Analysis of the Public's Willingness to Mitigate Ecological Impacts of Climate Change," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 533-544, January.
    23. Arie Beresteanu & Federico Zincenko, 2018. "Efficiency Gains in Rank†ordered Multinomial Logit Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(1), pages 122-134, February.
    24. John Calfee & Clifford Winston & Randolph Stempski, 2001. "Econometric Issues In Estimating Consumer Preferences From Stated Preference Data: A Case Study Of The Value Of Automobile Travel Time," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 699-707, November.
    25. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    26. Jacob Goeree & Charles Holt & Thomas Palfrey, 2005. "Regular Quantal Response Equilibrium," Experimental Economics, Springer;Economic Science Association, vol. 8(4), pages 347-367, December.
    27. Greene, William H. & Hensher, David A. & Rose, John, 2006. "Accounting for heterogeneity in the variance of unobserved effects in mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 75-92, January.
    28. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    29. Kenneth E. Train & Clifford Winston, 2007. "Vehicle Choice Behavior And The Declining Market Share Of U.S. Automakers," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1469-1496, November.
    30. Ben-Akiva, Moshe & Morikawa, Takayuki & Shiroishi, Fumiaki, 1992. "Analysis of the reliability of preference ranking data," Journal of Business Research, Elsevier, vol. 24(2), pages 149-164, March.
    31. Calfee, John & Winston, Clifford, 1998. "The value of automobile travel time: implications for congestion policy," Journal of Public Economics, Elsevier, vol. 69(1), pages 83-102, July.
    32. Horowitz, Joel L., 2002. "Bootstrap critical values for tests based on the smoothed maximum score estimator," Journal of Econometrics, Elsevier, vol. 111(2), pages 141-167, December.
    33. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    34. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    35. Yan, Jin & Yoo, Hong Il, 2014. "The seeming unreliability of rank-ordered data as a consequence of model misspecification," MPRA Paper 56285, University Library of Munich, Germany.
    36. Jason Abrevaya & Jian Huang, 2005. "On the Bootstrap of the Maximum Score Estimator," Econometrica, Econometric Society, vol. 73(4), pages 1175-1204, July.
    37. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    38. Alejandro Caparrós & José L. Oviedo & Pablo Campos, 2008. "Would You Choose Your Preferred Option? Comparing Choice and Recoded Ranking Experiments," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(3), pages 843-855.
    39. Ruud, Paul A, 1983. "Sufficient Conditions for the Consistency of Maximum Likelihood Estimation Despite Misspecifications of Distribution in Multinomial Discrete Choice Models," Econometrica, Econometric Society, vol. 51(1), pages 225-228, January.
    40. Newey, Whitney K., 1986. "Linear instrumental variable estimation of limited dependent variable models with endogenous explanatory variables," Journal of Econometrics, Elsevier, vol. 32(1), pages 127-141, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changbiao Liu & Yuling Li, 2023. "Estimation of Rank-Ordered Regret Minimization Models," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1611-1630, December.
    2. Kettlewell, Nathan & Walker, Matthew J. & Yoo, Hong Il, 2024. "Alternative Models of Preference Heterogeneity for Elicited Choice Probabilities," IZA Discussion Papers 16821, Institute of Labor Economics (IZA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José L. Oviedo & Hong Il Yoo, 2017. "A Latent Class Nested Logit Model for Rank-Ordered Data with Application to Cork Oak Reforestation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1021-1051, December.
    2. Jeremy T. Fox, 2018. "Estimating matching games with transfers," Quantitative Economics, Econometric Society, vol. 9(1), pages 1-38, March.
    3. Hong il Yoo, 2012. "The perceived unreliability of rank-ordered data: an econometric origin and implications," Discussion Papers 2012-46, School of Economics, The University of New South Wales.
    4. Hanemann, W. Michael & Kanninen, Barbara, 1996. "The Statistical Analysis Of Discrete-Response Cv Data," CUDARE Working Papers 25022, University of California, Berkeley, Department of Agricultural and Resource Economics.
    5. Shakeeb Khan & Fu Ouyang & Elie Tamer, 2021. "Inference on semiparametric multinomial response models," Quantitative Economics, Econometric Society, vol. 12(3), pages 743-777, July.
    6. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    7. Fu Ouyang & Thomas Tao Yang, 2020. "Semiparametric Discrete Choice Models for Bundles," Discussion Papers Series 625, School of Economics, University of Queensland, Australia.
    8. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    9. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    10. Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
    11. Magnac, Thierry & Maurin, Eric, 2007. "Identification and information in monotone binary models," Journal of Econometrics, Elsevier, vol. 139(1), pages 76-104, July.
    12. Le-Yu Chen & Sokbae (Simon) Lee & Myung Jae Sung, 2013. "Maximum score estimation of preference parameters for a binary choice model under uncertainty," CeMMAP working papers CWP14/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Le‐Yu Chen & Sokbae Lee & Myung Jae Sung, 2014. "Maximum score estimation with nonparametrically generated regressors," Econometrics Journal, Royal Economic Society, vol. 17(3), pages 271-300, October.
    14. Fu Ouyang & Thomas T. Yang, 2023. "Semiparametric Discrete Choice Models for Bundles," Papers 2306.04135, arXiv.org, revised Nov 2023.
    15. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    16. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    17. Crawford, Gregory S. & Griffith, Rachel & Iaria, Alessandro, 2021. "A survey of preference estimation with unobserved choice set heterogeneity," Journal of Econometrics, Elsevier, vol. 222(1), pages 4-43.
    18. Chen, Songnian & Zhang, Hanghui, 2015. "Binary quantile regression with local polynomial smoothing," Journal of Econometrics, Elsevier, vol. 189(1), pages 24-40.
    19. Khai Xiang Chiong & Matthew Shum, 2019. "Random Projection Estimation of Discrete-Choice Models with Large Choice Sets," Management Science, INFORMS, vol. 65(1), pages 256-271, January.
    20. Chen, Xirong & Gao, Wenzheng & Li, Zheng, 2018. "A data-driven bandwidth selection method for the smoothed maximum score estimator," Economics Letters, Elsevier, vol. 170(C), pages 24-26.

    More about this item

    Keywords

    Random utility; Rank-ordered; Discrete choice; Semiparametric estimation; Smoothing;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:211:y:2019:i:2:p:414-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.