IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v26y2010i05p1437-1452_99.html
   My bibliography  Save this article

Risk Minimization For Time Series Binary Choice With Variable Selection

Author

Listed:
  • Jiang, Wenxin
  • Tanner, Martin A.

Abstract

This paper considers the problem of predicting binary choices by selecting from a possibly large set of candidate explanatory variables, which can include both exogenous variables and lagged dependent variables. We consider risk minimization with the risk function being the predictive classification error. We study the convergence rates of empirical risk minimization in both the frequentist and Bayesian approaches. The Bayesian treatment uses a Gibbs posterior constructed directly from the empirical risk instead of using the usual likelihood-based posterior. Therefore these approaches do not require a correctly specified probability model. We show that the proposed methods have near optimal performance relative to a class of linear classification rules with selected variables. Such results in classification are obtained in a framework of dependent data with strong mixing.

Suggested Citation

  • Jiang, Wenxin & Tanner, Martin A., 2010. "Risk Minimization For Time Series Binary Choice With Variable Selection," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1437-1452, October.
  • Handle: RePEc:cup:etheor:v:26:y:2010:i:05:p:1437-1452_99
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466609990636/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Brownlees & Gu{dh}mundur Stef'an Gu{dh}mundsson, 2021. "Performance of Empirical Risk Minimization for Linear Regression with Dependent Data," Papers 2104.12127, arXiv.org, revised May 2023.
    2. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    3. Christian Brownlees & Gu{dh}mundur Stef'an Gu{dh}mundsson & Yaping Wang, 2024. "Performance of Empirical Risk Minimization For Principal Component Regression," Papers 2409.03606, arXiv.org, revised Sep 2024.
    4. Yao, Lili & Jiang, Wenxin, 2012. "On extensions of Hoeffding’s inequality for panel data," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 446-454.
    5. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Jun 2023.
    6. Le-Yu Chen & Sokbae Lee, 2018. "High Dimensional Classification through $\ell_0$-Penalized Empirical Risk Minimization," Papers 1811.09540, arXiv.org.
    7. Abhik Ghosh & Ayanendranath Basu, 2016. "Robust Bayes estimation using the density power divergence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 413-437, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:26:y:2010:i:05:p:1437-1452_99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.