IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v8y2018icp37-55.html
   My bibliography  Save this article

A hyperplanes intersection simulated annealing algorithm for maximum score estimation

Author

Listed:
  • Florios, Kostas

Abstract

A new hyperplanes intersection simulated annealing (HISA) algorithm, based on a discrete representation of the search space as a combinatorial set of hyperplanes intersections, is developed for maximum score estimation of the binary choice model. As a prerequisite of the discrete space simulated annealing algorithm, also, a multi-start Hyperplanes Intersection Local Search algorithm (HILS) is devised. The implementation of the local search and simulated annealing algorithms searches the space of hyperplanes intersections combinations formulated by the regression’s observations. A set of attributes that are equivalent to the hyperplanes whose intersections define potential maxima is selected as the solution representation. A swap move is introduced so that starting from an arbitrary set of attributes, nearby sets of attributes are generated and evaluated either using the steepest ascent or the Metropolis criterion. Applications include a work-trip mode choice application, for which the global optimum is known, and two labor force participation datasets with unknown global optima. Comparison is made to leading heuristic and metaheuristic approaches as well as to Mixed Integer Programming. Results show that multi-start HILS and especially HISA offer the best results for the two labor force participation datasets, and also discover the global optimum in the work-trip mode choice application.

Suggested Citation

  • Florios, Kostas, 2018. "A hyperplanes intersection simulated annealing algorithm for maximum score estimation," Econometrics and Statistics, Elsevier, vol. 8(C), pages 37-55.
  • Handle: RePEc:eee:ecosta:v:8:y:2018:i:c:p:37-55
    DOI: 10.1016/j.ecosta.2017.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306217300291
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2017.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newey, Whitney K & Powell, James L & Walker, James R, 1990. "Semiparametric Estimation of Selection Models: Some Empirical Results," American Economic Review, American Economic Association, vol. 80(2), pages 324-328, May.
    2. Gregory Kordas, 2006. "Smoothed binary regression quantiles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 387-407.
    3. E. Charlier & B. Melenberg & A. H. O. van Soest, 1995. "A smoothed maximum score estimator for the binary choice panel data model with an application to labour force participation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 49(3), pages 324-342, November.
    4. Manski, Charles F. & Thompson, T. Scott, 1986. "Operational characteristics of maximum score estimation," Journal of Econometrics, Elsevier, vol. 32(1), pages 85-108, June.
    5. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    6. Gerfin, Michael, 1996. "Parametric and Semi-parametric Estimation of the Binary Response Model of Labor Market Participation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 321-339, May-June.
    7. Mroz, Thomas A, 1987. "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," Econometrica, Econometric Society, vol. 55(4), pages 765-799, July.
    8. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    9. Manfred Gilli & Peter Winker, 2008. "Review of Heuristic Optimization Methods in Econometrics," Working Papers 001, COMISEF.
    10. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    11. Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
    12. Anson T.Y. Ho & Kim P. Huynh & David T. Jacho‐ChÁvez, 2014. "crs: A PACKAGE FOR NONPARAMETRIC SPLINE ESTIMATION IN R," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 348-352, March.
    13. Escanciano, Juan Carlos & Song, Kyungchul, 2010. "Testing single-index restrictions with a focus on average derivatives," Journal of Econometrics, Elsevier, vol. 156(2), pages 377-391, June.
    14. Horowitz, Joel L., 1993. "Semiparametric estimation of a work-trip mode choice model," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 49-70, July.
    15. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    16. Dries F. Benoit & Dirk Van den Poel, 2012. "Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1174-1188, November.
    17. Pinkse, C. A. P., 1993. "On the computation of semiparametric estimates in limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 185-205, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    2. Heinz König & Michael Lechner, 1994. "Some Recent Developments in Microeconometrics - A Survey," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 130(III), pages 299-331, September.
    3. Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
    4. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2022. "Robust Ranking of Happiness Outcomes: A Median Regression Perspective," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 672-686.
    5. Adam M. Rosen & Takuya Ura, 2019. "Finite Sample Inference for the Maximum Score Estimand," Papers 1903.01511, arXiv.org, revised May 2020.
    6. D. F. Benoit & D. Van Den Poel, 2010. "Binary quantile regression: A Bayesian approach based on the asymmetric Laplace density," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/662, Ghent University, Faculty of Economics and Business Administration.
    7. Escanciano, Juan Carlos & Song, Kyungchul, 2010. "Testing single-index restrictions with a focus on average derivatives," Journal of Econometrics, Elsevier, vol. 156(2), pages 377-391, June.
    8. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    9. Chen, Songnian & Zhang, Hanghui, 2015. "Binary quantile regression with local polynomial smoothing," Journal of Econometrics, Elsevier, vol. 189(1), pages 24-40.
    10. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2019. "Have Econometric Analyses of Happiness Data Been Futile? A Simple Truth about Happiness Scales," IZA Discussion Papers 12152, Institute of Labor Economics (IZA).
    11. Christopher D. Walker, 2024. "A Bayesian Perspective on the Maximum Score Problem," Papers 2410.17153, arXiv.org.
    12. Gregory Kordas, 2006. "Smoothed binary regression quantiles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 387-407, April.
    13. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    14. V L Miguéis & D F Benoit & D Van den Poel, 2013. "Enhanced decision support in credit scoring using Bayesian binary quantile regression," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1374-1383, September.
    15. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    16. Jeremy T. Fox, 2018. "Estimating matching games with transfers," Quantitative Economics, Econometric Society, vol. 9(1), pages 1-38, March.
    17. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    18. Naegele, Helene, 2015. "Offset Credits in the EU Emissions Trading System : A Firm-Level Evaluation of Transaction Costs," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112817, Verein für Socialpolitik / German Economic Association.
    19. Charlier, G.W.P., 1994. "A smoothed maximum score estimator for the binary choice panel data model with individual fixed effects and applications to labour force participation," Other publications TiSEM 0067a45e-7f33-45dd-89be-0, Tilburg University, School of Economics and Management.
    20. Helene Naegele, 2015. "Offset Credits in the EU ETS: A Quantile Estimation of Firm-Level Transaction Costs," Discussion Papers of DIW Berlin 1513, DIW Berlin, German Institute for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:8:y:2018:i:c:p:37-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.