Exact computation of GMM estimators for instrumental variable quantile regression models
Author
Abstract
Suggested Citation
DOI: 10.1920/wp.cem.2017.5217
Download full text from publisher
Other versions of this item:
- Le‐Yu Chen & Sokbae Lee, 2018. "Exact computation of GMM estimators for instrumental variable quantile regression models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 553-567, June.
- Le-Yu Chen & Sokbae (Simon) Lee, 2017. "Exact computation of GMM estimators for instrumental variable quantile regression models," CeMMAP working papers CWP52/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
References listed on IDEAS
- Victor Chernozhukov & Christian Hansen, 2004. "The Effects of 401(K) Participation on the Wealth Distribution: An Instrumental Quantile Regression Analysis," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 735-751, August.
- Kaplan, David M. & Sun, Yixiao, 2017.
"Smoothed Estimating Equations For Instrumental Variables Quantile Regression,"
Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
- Kaplan, David M. & Sun, Yixiao, 2012. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," University of California at San Diego, Economics Working Paper Series qt888657tp, Department of Economics, UC San Diego.
- David M. Kaplan & Yixiao Sun, 2016. "Smoothed estimating equations for instrumental variables quantile regression," Papers 1609.09033, arXiv.org.
- David M. Kaplan & Yixiao Sun, 2013. "Smoothed Estimating Equations for Instrumental Variables Quantile Regression," Working Papers 1314, Department of Economics, University of Missouri.
- Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016.
"IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade,"
Econometrica, Econometric Society, vol. 84, pages 809-833, March.
- Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2015. "IV Quantile Regression for Group-level Treatments, with an Application to the Distributional Effects of Trade," NBER Working Papers 21033, National Bureau of Economic Research, Inc.
- Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003.
"Estimation of Semiparametric Models when the Criterion Function Is Not Smooth,"
Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
- Xiaohong Chen & Oliver Linton & Ingred van Keilegom, 2002. "Estimation of semiparametric models when the criterion function is not smooth," CeMMAP working papers CWP02/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chen, Xiaohong & Linton, Oliver & Van Keilegom, Ingrid, 2003. "Estimation of semiparametric models when the criterion function is not smooth," LSE Research Online Documents on Economics 2167, London School of Economics and Political Science, LSE Library.
- Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function is not Smooth," STICERD - Econometrics Paper Series 450, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Komarova, Tatiana & Severini, Thomas A. & Tamer, Elie, 2012. "Quantile Uncorrelation and Instrumental Regressions," Scholarly Articles 25267902, Harvard University Department of Economics.
- Toru Kitagawa & Aleksey Tetenov, 2018.
"Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice,"
Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP10/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP24/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Carlo Alberto Notebooks 402, Collegio Carlo Alberto.
- Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
- Kathryn Graddy, 1995.
"Testing for Imperfect Competition at the Fulton Fish Market,"
RAND Journal of Economics, The RAND Corporation, vol. 26(1), pages 75-92, Spring.
- Graddy, K., 1993. "Testing for Imperfect Competition at the Fulton Fish Market," Papers 137, Princeton, Department of Economics - Financial Research Center.
- Donald W. K. Andrews, 1997.
"A Stopping Rule for the Computation of Generalized Method of Moments Estimators,"
Econometrica, Econometric Society, vol. 65(4), pages 913-932, July.
- Donald W.K. Andrews, 1996. "A Stopping Rule for the Computation of Generalized Method of Moments Estimators," Cowles Foundation Discussion Papers 1120, Cowles Foundation for Research in Economics, Yale University.
- Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
- Bernard Gendron & Teodor Gabriel Crainic, 1994. "Parallel Branch-and-Branch Algorithms: Survey and Synthesis," Operations Research, INFORMS, vol. 42(6), pages 1042-1066, December.
- Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2007. "Inference approaches for instrumental variable quantile regression," Economics Letters, Elsevier, vol. 95(2), pages 272-277, May.
- Chernozhukov, Victor & Hong, Han, 2003.
"An MCMC approach to classical estimation,"
Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
- Victor Chernozhukov & Han Hong, 2023. "An MCMC Approach to Classical Estimation," Papers 2301.07782, arXiv.org.
- Komarova Tatiana & Severini Thomas A. & Tamer Elie T., 2012. "Quantile Uncorrelation and Instrumental Regressions," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 2-14, August.
- Chen, Le-Yu & Lee, Sokbae, 2018.
"Best subset binary prediction,"
Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
- Le-Yu Chen & Sokbae Lee, 2016. "Best Subset Binary Prediction," Papers 1610.02738, arXiv.org, revised May 2018.
- Le-Yu Chen & Sokbae (Simon) Lee, 2017. "Best subset binary prediction," CeMMAP working papers CWP50/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Le-Yu Chen & Sokbae (Simon) Lee, 2017. "Best subset binary prediction," CeMMAP working papers 50/17, Institute for Fiscal Studies.
- Bilias, Yannis & Florios, Kostas & Skouras, Spyros, 2019. "Exact computation of Censored Least Absolute Deviations estimator," Journal of Econometrics, Elsevier, vol. 212(2), pages 584-606.
- Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
- Honore, Bo E & Hu, Luojia, 2004. "On the Performance of Some Robust Instrumental Variables Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 30-39, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kaspar Wüthrich, 2020.
"A Comparison of Two Quantile Models With Endogeneity,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
- Kaspar W thrich, 2014. "A Comparison of two Quantile Models with Endogeneity," Diskussionsschriften dp1408, Universitaet Bern, Departement Volkswirtschaft.
- Wüthrich, Kaspar, 2020. "A Comparison of Two Quantile Models With Endogeneity," University of California at San Diego, Economics Working Paper Series qt0q43931f, Department of Economics, UC San Diego.
- Koki Fusejima, 2020. "Identification of multi-valued treatment effects with unobserved heterogeneity," Papers 2010.04385, arXiv.org, revised Apr 2023.
- Machado, José A.F. & Santos Silva, J.M.C., 2019. "Quantiles via moments," Journal of Econometrics, Elsevier, vol. 213(1), pages 145-173.
- Xin Liu, 2024.
"Averaging Estimation for Instrumental Variables Quantile Regression,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(5), pages 1290-1312, October.
- Xin Liu, 2019. "Averaging estimation for instrumental variables quantile regression," Papers 1910.04245, arXiv.org.
- Xin Liu, 2019. "Averaging estimation for instrumental variables quantile regression," Working Papers 1907, Department of Economics, University of Missouri.
- Yinchu Zhu, 2018. "Learning non-smooth models: instrumental variable quantile regressions and related problems," Papers 1805.06855, arXiv.org, revised Sep 2019.
- de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019.
"Smoothed GMM for quantile models,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan, 2017. "Smoothed instrumental variables quantile regression, with estimation of quantile Euler equations," Working Papers 1710, Department of Economics, University of Missouri, revised 28 Feb 2018.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2018. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri.
- Wüthrich, Kaspar, 2019.
"A closed-form estimator for quantile treatment effects with endogeneity,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
- Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," University of California at San Diego, Economics Working Paper Series qt99n9197q, Department of Economics, UC San Diego.
- Hjertstrand, Per & Swofford, James L. & Whitney, Gerald A., 2023. "Testing for Weak Separability and Utility Maximization with Incomplete Adjustment," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
- He, Xuming & Pan, Xiaoou & Tan, Kean Ming & Zhou, Wen-Xin, 2023. "Smoothed quantile regression with large-scale inference," Journal of Econometrics, Elsevier, vol. 232(2), pages 367-388.
- Javier Alejo & Antonio F Galvao & Gabriel Montes-Rojas, 2023.
"A first-stage representation for instrumental variables quantile regression,"
The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 350-377.
- Javier Alejo & Antonio F. Galvao & Gabriel Montes-Rojas, 2021. "A first-stage representation for instrumental variables quantile regression," Papers 2102.01212, arXiv.org, revised Feb 2022.
- de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019.
"Smoothed GMM for quantile models,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2017. "Smoothed GMM for quantile models," Papers 1707.03436, arXiv.org, revised Feb 2018.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2018. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri.
- Hiroaki Kaido & Kaspar Wüthrich, 2021.
"Decentralization estimators for instrumental variable quantile regression models,"
Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
- Hiroaki Kaido & Kaspar Wüthrich, 2018. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP72/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kaido, Hiroaki & Wüthrich, Kaspar, 2021. "Decentralization estimators for instrumental variable quantile regression models," University of California at San Diego, Economics Working Paper Series qt362921wv, Department of Economics, UC San Diego.
- Hiroaki Kaido & Kaspar Wuthrich, 2018. "Decentralization Estimators for Instrumental Variable Quantile Regression Models," Papers 1812.10925, arXiv.org, revised Sep 2020.
- Hiroaki Kaido & Kaspar Wüthrich, 2019. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP42/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Youngki Shin & Zvezdomir Todorov, 2021.
"Exact computation of maximum rank correlation estimator,"
The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 589-607.
- Youngki Shin & Zvezdomir Todorov, 2020. "Exact Computation of Maximum Rank Correlation Estimator," Papers 2009.03844, arXiv.org, revised Jan 2021.
- Youngki Shin & Zvezdomir Todorov, 2021. "Exact Computation of Maximum Rank Correlation Estimator," Department of Economics Working Papers 2021-03, McMaster University.
- Canepa, Alessandra & de la O. González, María & Skinner, Frank S., 2020.
"Hedge fund strategies: A non-parametric analysis,"
International Review of Financial Analysis, Elsevier, vol. 67(C).
- Canepa, Alessandra & de la O. González, María & Skinner, Frank S., 2019. "Hedge Fund Strategies: A non-Parametric Analysis," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201902, University of Turin.
- Grigory Franguridi & Bulat Gafarov & Kaspar Wuthrich, 2020. "Bias correction for quantile regression estimators," Papers 2011.03073, arXiv.org, revised Nov 2024.
- Fusejima, Koki, 2024. "Identification of multi-valued treatment effects with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 238(1).
- Bin Xu & Boqiang Lin, 2021. "Large fluctuations of China's commodity prices: Main sources and heterogeneous effects," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2074-2089, April.
- Jau-er Chen & Chien-Hsun Huang & Jia-Jyun Tien, 2021.
"Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions,"
Econometrics, MDPI, vol. 9(2), pages 1-18, April.
- Jau-er Chen & Chien-Hsun Huang & Jia-Jyun Tien, 2019. "Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions," Papers 1909.12592, arXiv.org, revised Feb 2021.
- Grigory Franguridi & Bulat Gafarov & Kaspar Wüthrich, 2021. "Conditional Quantile Estimators: A Small Sample Theory," CESifo Working Paper Series 9046, CESifo.
- Nahid Farnaz, 2023. "Does Financial Development Relieve or Exacerbate Income Inequality? A Quantile Regression Approach," Economics Discussion Paper Series 2311, Economics, The University of Manchester.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bilias, Yannis & Florios, Kostas & Skouras, Spyros, 2019. "Exact computation of Censored Least Absolute Deviations estimator," Journal of Econometrics, Elsevier, vol. 212(2), pages 584-606.
- Parente, Paulo M.D.C. & Smith, Richard J., 2011.
"Gel Methods For Nonsmooth Moment Indicators,"
Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
- Paulo Parente & Richard Smith, 2008. "GEL methods for non-smooth moment indicators," CeMMAP working papers CWP19/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- V. Chernozhukov & C. Hansen, 2013.
"Quantile Models with Endogeneity,"
Annual Review of Economics, Annual Reviews, vol. 5(1), pages 57-81, May.
- Victor Chernozhukov & Christian Hansen, 2013. "Quantile Models with Endogeneity," Papers 1303.7050, arXiv.org.
- Victor Chernozhukov & Christian Hansen, 2013. "Quantile models with endogeneity," CeMMAP working papers 25/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen, 2013. "Quantile models with endogeneity," CeMMAP working papers CWP25/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Komunjer, Ivana, 2005.
"Quasi-maximum likelihood estimation for conditional quantiles,"
Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
- Komunjer, Ivana, 2002. "Quasi-Maximum Likelihood Estimation for Conditional Quantiles," Working Papers 1139, California Institute of Technology, Division of the Humanities and Social Sciences.
- Javier Alejo & Antonio F Galvao & Gabriel Montes-Rojas, 2023.
"A first-stage representation for instrumental variables quantile regression,"
The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 350-377.
- Javier Alejo & Antonio F. Galvao & Gabriel Montes-Rojas, 2021. "A first-stage representation for instrumental variables quantile regression," Papers 2102.01212, arXiv.org, revised Feb 2022.
- Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
- Lee, Sokbae, 2007.
"Endogeneity in quantile regression models: A control function approach,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
- Sokbae (Simon) Lee, 2004. "Endogeneity in quantile regression models: a control function approach," CeMMAP working papers 08/04, Institute for Fiscal Studies.
- Sokbae Lee, 2004. "Endogeneity in Quantile Regression Models: A Control Function Approach," Econometric Society 2004 North American Summer Meetings 521, Econometric Society.
- Sokbae (Simon) Lee, 2004. "Endogeneity in quantile regression models: a control function approach," CeMMAP working papers CWP08/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wüthrich, Kaspar, 2019.
"A closed-form estimator for quantile treatment effects with endogeneity,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
- Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," University of California at San Diego, Economics Working Paper Series qt99n9197q, Department of Economics, UC San Diego.
- Tae-Hwy Lee & Aman Ullah & He Wang, 2023. "The Second-order Bias and Mean Squared Error of Quantile Regression Estimators," Working Papers 202313, University of California at Riverside, Department of Economics.
- Kaspar Wüthrich, 2020.
"A Comparison of Two Quantile Models With Endogeneity,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
- Kaspar W thrich, 2014. "A Comparison of two Quantile Models with Endogeneity," Diskussionsschriften dp1408, Universitaet Bern, Departement Volkswirtschaft.
- Wüthrich, Kaspar, 2020. "A Comparison of Two Quantile Models With Endogeneity," University of California at San Diego, Economics Working Paper Series qt0q43931f, Department of Economics, UC San Diego.
- Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
- Tae-Hwy Lee & Aman Ullah & He Wang, 2024. "The second-order bias and mean squared error of quantile regression estimators," Indian Economic Review, Springer, vol. 59(1), pages 11-68, October.
- Grigory Franguridi & Bulat Gafarov & Kaspar Wuthrich, 2020. "Bias correction for quantile regression estimators," Papers 2011.03073, arXiv.org, revised Nov 2024.
- Yinchu Zhu, 2018. "Learning non-smooth models: instrumental variable quantile regressions and related problems," Papers 1805.06855, arXiv.org, revised Sep 2019.
- Youngki Shin & Zvezdomir Todorov, 2021.
"Exact computation of maximum rank correlation estimator,"
The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 589-607.
- Youngki Shin & Zvezdomir Todorov, 2020. "Exact Computation of Maximum Rank Correlation Estimator," Papers 2009.03844, arXiv.org, revised Jan 2021.
- Youngki Shin & Zvezdomir Todorov, 2021. "Exact Computation of Maximum Rank Correlation Estimator," Department of Economics Working Papers 2021-03, McMaster University.
- Jun, Sung Jae, 2009. "Local structural quantile effects in a model with a nonseparable control variable," Journal of Econometrics, Elsevier, vol. 151(1), pages 82-97, July.
- Mayer, Alexander & Wied, Dominik, 2023.
"Estimation and inference in factor copula models with exogenous covariates,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1500-1521.
- Alexander Mayer & Dominik Wied, 2021. "Estimation and Inference in Factor Copula Models with Exogenous Covariates," Papers 2107.03366, arXiv.org, revised Dec 2022.
- Hong, Han & Mahajan, Aprajit & Nekipelov, Denis, 2015. "Extremum estimation and numerical derivatives," Journal of Econometrics, Elsevier, vol. 188(1), pages 250-263.
- Hiroaki Kaido & Kaspar Wüthrich, 2021.
"Decentralization estimators for instrumental variable quantile regression models,"
Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
- Hiroaki Kaido & Kaspar Wuthrich, 2018. "Decentralization Estimators for Instrumental Variable Quantile Regression Models," Papers 1812.10925, arXiv.org, revised Sep 2020.
- Hiroaki Kaido & Kaspar Wüthrich, 2018. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP72/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kaido, Hiroaki & Wüthrich, Kaspar, 2021. "Decentralization estimators for instrumental variable quantile regression models," University of California at San Diego, Economics Working Paper Series qt362921wv, Department of Economics, UC San Diego.
- Hiroaki Kaido & Kaspar Wüthrich, 2019. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP42/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Le-Yu Chen & Sokbae Lee, 2018. "High Dimensional Classification through $\ell_0$-Penalized Empirical Risk Minimization," Papers 1811.09540, arXiv.org.
More about this item
JEL classification:
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:52/17. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.