IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v33y2017i06p1418-1456_00.html
   My bibliography  Save this article

Integrated Score Estimation

Author

Listed:
  • Jun, Sung Jae
  • Pinkse, Joris
  • Wan, Yuanyuan

Abstract

We study the properties of the integrated score estimator (ISE), which is the Laplace version of Manski’s maximum score estimator (MMSE). The ISE belongs to a class of estimators whose basic asymptotic properties were studied in Jun, Pinkse, and Wan (2015, Journal of Econometrics 187(1), 201–216). Here, we establish that the MMSE, or more precisely $$\root 3 \of n |\hat \theta _M - \theta _0 |$$, (locally first order) stochastically dominates the ISE under the conditions necessary for the MMSE to attain its $\root 3 \of n $ convergence rate and that the ISE has the same convergence rate as Horowitz’s smoothed maximum score estimator (SMSE) under somewhat weaker conditions. An implication of the stochastic dominance result is that the confidence intervals of the MMSE are for any given coverage rate wider than those of the ISE, provided that the input parameter αn is not chosen too large. Further, we introduce an inference procedure that is not only rate adaptive as established in Jun et al. (2015), but also uniform in the choice of αn. We propose three different first order bias elimination procedures and we discuss the choice of input parameters. We develop a computational algorithm for the ISE based on the Gibbs sampler and we examine implementational issues in detail. We argue in favor of normalizing the norm of the parameter vector as opposed to fixing one of the coefficients. Finally, we evaluate the computational efficiency of the ISE and the performance of the ISE and the proposed inference procedure in an extensive Monte Carlo study.

Suggested Citation

  • Jun, Sung Jae & Pinkse, Joris & Wan, Yuanyuan, 2017. "Integrated Score Estimation," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1418-1456, December.
  • Handle: RePEc:cup:etheor:v:33:y:2017:i:06:p:1418-1456_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466616000463/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:33:y:2017:i:06:p:1418-1456_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.