IDEAS home Printed from https://ideas.repec.org/p/hal/ciredw/hal-01057241.html
   My bibliography  Save this paper

Optimal Transition from Coal to Gas and Renewable Power under Capacity Constraints and Adjustment Costs

Author

Listed:
  • Oskar Lecuyer

    (OCCR - Oeschger Centre for Climate Change Research - UNIBE - Universität Bern = University of Bern = Université de Berne)

  • Adrien Vogt-Schilb

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique, Climate Change Group - The World Bank)

Abstract

This paper studies the optimal transition from existing coal power plants to gas and renewable power under a carbon budget. It solves a model of polluting, exhaustible resources with capacity constraints and adjustment costs (to build coal, gas, and renewable power plants). It finds that optimal investment in renewable energy may start before coal power has been phased out and even before investment in gas has started, because doing so allows for smoothing investment over time and reduces adjustment costs. Gas plants may be used to reduce short-term investment in renewable power and associated costs, but must eventually be phased out to allow room for carbon-free power. One risk for myopic agents comparing gas and renewable investment is thus to overestimate the lifetime of gas plants - e.g., when computing the levelized cost of electricity - and be biased against renewable power. These analytical results are quantified with numerical simulations of the European Commission's 2050 energy roadmap.

Suggested Citation

  • Oskar Lecuyer & Adrien Vogt-Schilb, 2014. "Optimal Transition from Coal to Gas and Renewable Power under Capacity Constraints and Adjustment Costs," CIRED Working Papers hal-01057241, HAL.
  • Handle: RePEc:hal:ciredw:hal-01057241
    Note: View the original document on HAL open archive server: https://enpc.hal.science/hal-01057241
    as

    Download full text from publisher

    File URL: https://enpc.hal.science/hal-01057241/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pfeiffer, Alexander & Hepburn, Cameron & Vogt-Schilb, Adrien & Caldecott, Ben, 2018. "Committed Emissions from Existing and Planned Power Plants and Asset Stranding Required to Meet the Paris Agreement," IDB Publications (Working Papers) 8886, Inter-American Development Bank.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Dieter Helm & Cameron Hepburn & Richard Mash, 2003. "Credible Carbon Policy," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 19(3), pages 438-450.
    4. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    5. Wang, Min & Zhao, Jinhua, 2013. "Monopoly extraction of a nonrenewable resource facing capacity constrained renewable competition," Economics Letters, Elsevier, vol. 120(3), pages 503-508.
    6. Bramoulle, Yann & Olson, Lars J., 2005. "Allocation of pollution abatement under learning by doing," Journal of Public Economics, Elsevier, vol. 89(9-10), pages 1935-1960, September.
    7. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
    8. Coulomb, Renaud & Henriet, Fanny, 2018. "The Grey Paradox: How fossil-fuel owners can benefit from carbon taxation," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 206-223.
    9. GAUDET, Gérard & SALANT, Stephen W., 2014. "The hotelling model with multiple demands," Cahiers de recherche 2014-04, Universite de Montreal, Departement de sciences economiques.
    10. Ambec, Stefan & Crampes, Claude, 2012. "Electricity provision with intermittent sources of energy," Resource and Energy Economics, Elsevier, vol. 34(3), pages 319-336.
    11. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2012. "Estimation of elasticity price of electricity with incomplete information," Energy Economics, Elsevier, vol. 34(3), pages 627-633.
    12. Dale Jorgenson, 1967. "The Theory of Investment Behavior," NBER Chapters, in: Determinants of Investment Behavior, pages 129-175, National Bureau of Economic Research, Inc.
    13. Joseph E. Stiglitz, 1974. "Growth with Exhaustible Natural Resources: The Competitive Economy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 139-152.
    14. Adrien Vogt-Schilb & St�phane Hallegatte & Christophe de Gouvello, 2015. "Marginal abatement cost curves and the quality of emission reductions: a case study on Brazil," Climate Policy, Taylor & Francis Journals, vol. 15(6), pages 703-723, November.
    15. Carolyn Fischer & Cees Withagen & Michael Toman, 2004. "Optimal Investment in Clean Production Capacity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 325-345, July.
    16. repec:bla:econom:v:44:y:1977:i:174:p:163-78 is not listed on IDEAS
    17. Céline Guivarch & Stéphanie Monjon & Julie Rozenberg & Adrien Vogt-Schilb, 2015. "Would Climate Policy Improve The European Energy Security?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-35.
    18. Amigues, Jean-Pierre & Kama, Alain Ayong Le & Moreaux, Michel, 2015. "Equilibrium transitions from non-renewable energy to renewable energy under capacity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 89-112.
    19. Flouri, Maria & Karakosta, Charikleia & Kladouchou, Charikleia & Psarras, John, 2015. "How does a natural gas supply interruption affect the EU gas security? A Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 785-796.
    20. Derek Lemoine & Christian P. Traeger, 2016. "Economics of tipping the climate dominoes," Nature Climate Change, Nature, vol. 6(5), pages 514-519, May.
    21. Slechten, Aurélie, 2013. "Intertemporal links in cap-and-trade schemes," Journal of Environmental Economics and Management, Elsevier, vol. 66(2), pages 319-336.
    22. Julie Rozenberg & Adrien Vogt-Schilb & Stephane Hallegatte, 2017. "Instrument Choice and Stranded Assets in the Transition to Clean Capital," IDB Publications (Working Papers) 98039, Inter-American Development Bank.
    23. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    24. Ujjayant Chakravorty & Michel Moreaux & Mabel Tidball, 2008. "Ordering the Extraction of Polluting Nonrenewable Resources," American Economic Review, American Economic Association, vol. 98(3), pages 1128-1144, June.
    25. Gerlagh, Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2014. "The optimal time path of clean energy R&D policy when patents have finite lifetime," Journal of Environmental Economics and Management, Elsevier, vol. 67(1), pages 2-19.
    26. Coulomb, Renaud & Henriet, Fanny, 2018. "The Grey Paradox: How fossil-fuel owners can benefit from carbon taxation," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 206-223.
    27. Roberton C. Williams III, 2011. "Setting the Initial Time-Profile of Climate Policy: The Economics of Environmental Policy Phase-Ins," NBER Chapters, in: The Design and Implementation of US Climate Policy, pages 245-254, National Bureau of Economic Research, Inc.
    28. Erin Baker & Meredith Fowlie & Derek Lemoine & Stanley S. Reynolds, 2013. "The Economics of Solar Electricity," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 387-426, June.
    29. Waisman, Henri & Rozenberg, Julie & Sassi, Olivier & Hourcade, Jean-Charles, 2012. "Peak Oil profiles through the lens of a general equilibrium assessment," Energy Policy, Elsevier, vol. 48(C), pages 744-753.
    30. Patrick J. Kehoe & Andrew Atkeson, 1999. "Models of Energy Use: Putty-Putty versus Putty-Clay," American Economic Review, American Economic Association, vol. 89(4), pages 1028-1043, September.
    31. Ferdinand A. Gul & Judy S. L. Tsui, 2004. "Introduction and overview," Palgrave Macmillan Books, in: The Governance of East Asian Corporations, chapter 1, pages 1-26, Palgrave Macmillan.
    32. Gérard Gaudet & Pierre Lasserre, 2011. "The Efficient Use Of Multiple Sources Of A Nonrenewable Resource Under Supply Cost Uncertainty," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 245-258, February.
    33. Pindyck, Robert S, 1991. "Irreversibility, Uncertainty, and Investment," Journal of Economic Literature, American Economic Association, vol. 29(3), pages 1110-1148, September.
    34. Frederick Ploeg & Cees Withagen, 1991. "Pollution control and the Ramsey problem," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 1(2), pages 215-236, June.
    35. Elmar Kriegler & John Weyant & Geoffrey Blanford & Volker Krey & Leon Clarke & Jae Edmonds & Allen Fawcett & Gunnar Luderer & Keywan Riahi & Richard Richels & Steven Rose & Massimo Tavoni & Detlef Vuu, 2014. "The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies," Climatic Change, Springer, vol. 123(3), pages 353-367, April.
    36. Claudio Marcantonini & A. Denny Ellerman, 2014. "The Implicit Carbon Price of Renewable Energy. Incentives in Germany," RSCAS Working Papers 2014/28, European University Institute.
    37. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    38. Weyant, John P., 2004. "Introduction and overview," Energy Economics, Elsevier, vol. 26(4), pages 501-515, July.
    39. Kemp, Murray C & Long, Ngo Van, 1980. "On Two Folk Theorems Concerning the Extraction of Exhaustible Resources," Econometrica, Econometric Society, vol. 48(3), pages 663-673, April.
    40. M. Ha-Duong & M. J. Grubb & J.-C. Hourcade, 1997. "Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement," Nature, Nature, vol. 390(6657), pages 270-273, November.
    41. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, January.
    42. Spiro, Daniel, 2014. "Resource prices and planning horizons," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 159-175.
    43. André, Francisco J. & Smulders, Sjak, 2014. "Fueling growth when oil peaks: Directed technological change and the limits to efficiency," European Economic Review, Elsevier, vol. 69(C), pages 18-39.
    44. van der Ploeg, Frederick & Withagen, Cees, 2012. "Too much coal, too little oil," Journal of Public Economics, Elsevier, vol. 96(1), pages 62-77.
    45. Golombek Rolf & Greaker Mads & Hoel Michael, 2010. "Carbon Taxes and Innovation without Commitment," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-21, April.
    46. Vogt-Schilb, Adrien & Hallegatte, Stephane & de Gouvello Christophe, 2014. "Long-term mitigation strategies and marginal abatement cost curves : a case study on Brazil," Policy Research Working Paper Series 6808, The World Bank.
    47. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    48. Chakravorty, Ujjayant & Magne, Bertrand & Moreaux, Michel, 2006. "A Hotelling model with a ceiling on the stock of pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2875-2904, December.
    49. Sjak Smulders & Edwin Van Der Werf, 2008. "Climate policy and the optimal extraction of high‐ and low‐carbon fossil fuels," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(4), pages 1421-1444, November.
    50. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    51. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stéphane, 2018. "When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 210-233.
    52. Amigues, Jean-Pierre & Kama, Alain Ayong Le & Moreaux, Michel, 2015. "Equilibrium transitions from non-renewable energy to renewable energy under capacity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 89-112.
    53. Espey, James A. & Espey, Molly, 2004. "Turning on the Lights: A Meta-Analysis of Residential Electricity Demand Elasticities," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(1), pages 1-17, April.
    54. Amigues, Jean-Pierre & Favard, Pascal & Gaudet, Gerard & Moreaux, Michel, 1998. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute Is Limited," Journal of Economic Theory, Elsevier, vol. 80(1), pages 153-170, May.
    55. Alistair Ulph & David Ulph, 2013. "Optimal Climate Change Policies When Governments Cannot Commit," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(2), pages 161-176, October.
    56. Holland, Stephen P., 2003. "Extraction capacity and the optimal order of extraction," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 569-588, May.
    57. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    58. R. M. Solow, 1974. "Intergenerational Equity and Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 29-45.
    59. H. Damon Matthews & Nathan P. Gillett & Peter A. Stott & Kirsten Zickfeld, 2009. "The proportionality of global warming to cumulative carbon emissions," Nature, Nature, vol. 459(7248), pages 829-832, June.
    60. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    61. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    62. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    63. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    64. Richard Loulou, 2008. "ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation," Computational Management Science, Springer, vol. 5(1), pages 41-66, February.
    65. A. Denny Ellerman, 2014. "The Implicit Carbon Price of Renewable Energy. Incentives in Germany," EUI-RSCAS Working Papers p0376, European University Institute (EUI), Robert Schuman Centre of Advanced Studies (RSCAS).
    66. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    67. Harry F. Campbell, 1980. "The Effect of Capital Intensity on the Optimal Rate of Extraction of a Mineral Deposit," Canadian Journal of Economics, Canadian Economics Association, vol. 13(2), pages 349-356, May.
    68. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, January.
    69. Myles R. Allen & David J. Frame & Chris Huntingford & Chris D. Jones & Jason A. Lowe & Malte Meinshausen & Nicolai Meinshausen, 2009. "Warming caused by cumulative carbon emissions towards the trillionth tonne," Nature, Nature, vol. 458(7242), pages 1163-1166, April.
    70. Rozenberg, Julie & Vogt-Schilb, Adrien & Hallegatte, Stephane, 2014. "Transition to clean capital, irreversible investment and stranded assets," Policy Research Working Paper Series 6859, The World Bank.
    71. Chao Wei, 2003. "Energy, the Stock Market, and the Putty-Clay Investment Model," American Economic Review, American Economic Association, vol. 93(1), pages 311-323, March.
    72. Marco Steinacher & Fortunat Joos & Thomas F. Stocker, 2013. "Allowable carbon emissions lowered by multiple climate targets," Nature, Nature, vol. 499(7457), pages 197-201, July.
    73. Frederick Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 283-311, February.
    74. Arrow, Kenneth J & Kurz, Mordecai, 1970. "Optimal Growth with Irreversible Investment in a Ramsey Model," Econometrica, Econometric Society, vol. 38(2), pages 331-344, March.
    75. J. P. Gould, 1968. "Adjustment Costs in the Theory of Investment of the Firm," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 35(1), pages 47-55.
    76. C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
    77. Jeffrey A. Krautkraemer, 1998. "Nonrenewable Resource Scarcity," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2065-2107, December.
    78. Robert E. Lucas & Jr., 1967. "Adjustment Costs and the Theory of Supply," Journal of Political Economy, University of Chicago Press, vol. 75(4), pages 321-321.
    79. Böhringer, Christoph & Keller, Andreas & Bortolamedi, Markus & Rahmeier Seyffarth, Anelise, 2016. "Good things do not always come in threes: On the excess cost of overlapping regulation in EU climate policy," Energy Policy, Elsevier, vol. 94(C), pages 502-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonneuil, N. & Boucekkine, R., 2016. "Optimal transition to renewable energy with threshold of irreversible pollution," European Journal of Operational Research, Elsevier, vol. 248(1), pages 257-262.
    2. Campiglio, Emanuele & Dietz, Simon & Venmans, Frank, 2022. "Optimal climate policy as if the transition matters," LSE Research Online Documents on Economics 117610, London School of Economics and Political Science, LSE Library.
    3. Becker, Jonathon M., 2023. "Tradable performance standards in a dynamic context," Resource and Energy Economics, Elsevier, vol. 73(C).
    4. Tadeusz Skoczkowski & Sławomir Bielecki & Arkadiusz Węglarz & Magdalena Włodarczak & Piotr Gutowski, 2018. "Impact assessment of climate policy on Poland's power sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1303-1349, December.
    5. Hoarau, Quentin & Meunier, Guy, 2023. "Coordination of sectoral climate policies and life cycle emissions," Resource and Energy Economics, Elsevier, vol. 72(C).
    6. Cahen-Fourot, Louison & Campiglio, Emanuele & Godin, Antoine & Kemp-Benedict, Eric & Trsek, Stefan, 2021. "Capital stranding cascades: The impact of decarbonisation on productive asset utilisation," Energy Economics, Elsevier, vol. 103(C).
    7. van den Bijgaart, Inge & Rodriguez, Mauricio, 2023. "Closing wells: Fossil development and abandonment in the energy transition," Resource and Energy Economics, Elsevier, vol. 74(C).
    8. Frederick van der Ploeg & Armon Rezai, 2020. "Stranded Assets in the Transition to a Carbon-Free Economy," Annual Review of Resource Economics, Annual Reviews, vol. 12(1), pages 281-298, October.
    9. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    10. Heimvik, Arild & Amundsen, Eirik S., 2021. "Prices vs. percentages: Use of tradable green certificates as an instrument of greenhouse gas mitigation," Energy Economics, Elsevier, vol. 99(C).
    11. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    12. Bunn, Derek W. & Redondo-Martin, Jorge & Muñoz-Hernandez, José I. & Diaz-Cachinero, Pablo, 2019. "Analysis of coal conversion to biomass as a transitional technology," Renewable Energy, Elsevier, vol. 132(C), pages 752-760.
    13. Louis Daumas, 2021. "Should we fear transition risks - A review of the applied literature," Working Papers 2021.05, FAERE - French Association of Environmental and Resource Economists.
    14. World Bank Group, 2018. "Strategic Use of Climate Finance to Maximize Climate Action," World Bank Publications - Reports 30475, The World Bank Group.
    15. Kollenbach, Gilbert, 2017. "On the optimal accumulation of renewable energy generation capacity," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 157-179.
    16. Jean-Pierre Amigues & Michel Moreaux & Nguyen Manh-Hung, 2019. "The Fossil Energy Interlude: Optimal Building, Maintaining and Scraping a Dedicated Capital, and the Hotelling Rule," Working Papers 2019.07, FAERE - French Association of Environmental and Resource Economists.
    17. Jianxin Guo & Xianchun Tan & Xiaoyan Meng & Yanping Li, 2022. "Clean technology investment considering synergistic effects: a case from the steel sintering process," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13748-13770, December.
    18. van der Ploeg, Frederick & Rezai, Armon, 2020. "The risk of policy tipping and stranded carbon assets," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    19. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    20. Hepburn, Cameron & Pfeiffer, Alexander & Vogt-Schilb, Adrien & J. Tulloch, Daniel, 2018. "Dead on arrival? Implicit stranded assets in leading IAM scenarios," INET Oxford Working Papers 2018-08, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    21. Zheng, Baoning & Bao, Zhejing & Yang, Li, 2023. "Design and equilibrium analysis of integrated market of ISO-led carbon emissions, green certificates and electricity considering their interplay," Energy Economics, Elsevier, vol. 126(C).
    22. Halvor B. Storrøsten, 2020. "Emission Regulation of Markets with Sluggish Supply Structures," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(1), pages 1-33, September.
    23. Oskar LECUYER & Esperanza GONZALEZ-MAHECHA & Michelle HALLACK & Morgan BAZILIAN & Adrien VOGT-SCHILB, 2019. "Committed emissions and the risk of stranded assets from power plants in Latin America and the Caribbean," Working Paper 7d9ac525-0354-46ef-aa0b-f, Agence française de développement.
    24. Stephane Hallegatte & Mook Bangalore & Laura Bonzanigo & Marianne Fay & Tamaro Kane & Ulf Narloch & Julie Rozenberg & David Treguer & Adrien Vogt-Schilb, 2016. "Shock Waves," World Bank Publications - Books, The World Bank Group, number 22787.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oskar Lecuyer & Adrien Vogt-Schilb, 2013. "Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital," CIRED Working Papers hal-00850680, HAL.
    2. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stéphane, 2018. "When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 210-233.
    3. Halvor B. Storrøsten, 2020. "Emission Regulation of Markets with Sluggish Supply Structures," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(1), pages 1-33, September.
    4. Pommeret, Aude & Ricci, Francesco & Schubert, Katheline, 2022. "Critical raw materials for the energy transition," European Economic Review, Elsevier, vol. 141(C).
    5. Rozenberg, Julie & Vogt-Schilb, Adrien & Hallegatte, Stephane, 2014. "Transition to clean capital, irreversible investment and stranded assets," Policy Research Working Paper Series 6859, The World Bank.
    6. Rozenberg, Julie & Vogt-Schilb, Adrien & Hallegatte, Stephane, 2020. "Instrument choice and stranded assets in the transition to clean capital," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    7. Fabre, Adrien & Fodha, Mouez & Ricci, Francesco, 2020. "Mineral resources for renewable energy: Optimal timing of energy production," Resource and Energy Economics, Elsevier, vol. 59(C).
    8. Amigues, Jean-Pierre & Kama, Alain Ayong Le & Moreaux, Michel, 2015. "Equilibrium transitions from non-renewable energy to renewable energy under capacity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 89-112.
    9. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    10. Adrien Vogt-Schilb & Guy Meunier & Stéphane Hallegatte, 2013. "Should marginal abatement costs differ across sectors? The effect of low-carbon capital accumulation," Working Papers hal-00850682, HAL.
    11. Prudence Dato, 2017. "Energy Transition Under Irreversibility: A Two-Sector Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 797-820, November.
    12. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    13. Vardar, N. Baris, 2024. "Optimal taxation of nonrenewable resources during clean energy transition: A general equilibrium approach," Mathematical Social Sciences, Elsevier, vol. 130(C), pages 10-23.
    14. Anna Creti & Alena Kotelnikova & Guy Meunier & Jean-Pierre Ponssard, 2018. "Defining the Abatement Cost in Presence of Learning-by-Doing: Application to the Fuel Cell Electric Vehicle," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(3), pages 777-800, November.
    15. Waisman, Henri & Rozenberg, Julie & Sassi, Olivier & Hourcade, Jean-Charles, 2012. "Peak Oil profiles through the lens of a general equilibrium assessment," Energy Policy, Elsevier, vol. 48(C), pages 744-753.
    16. Adrien Vogt-Schilb & Guy Meunier & Hallegatte Stéphane, 2013. "Should marginal abatement costs differ across sectors? The effect of low-carbon capital accumulation," Post-Print hal-00829420, HAL.
    17. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    18. Hassler, J. & Krusell, P. & Smith, A.A., 2016. "Environmental Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1893-2008, Elsevier.
    19. Gilbert Kollenbach, 2019. "Unilateral climate policy and the green paradox: Extraction costs matter," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 1036-1083, August.

    More about this item

    Keywords

    climate change mitigation; path dependence; optimal timing; investment; resource extraction; dynamic efficiency; early-scrapping;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:ciredw:hal-01057241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.