IDEAS home Printed from https://ideas.repec.org/p/hal/ciredw/hal-01079837.html
   My bibliography  Save this paper

Pathways toward Zero-Carbon Electricity Required for Climate Stabilization

Author

Listed:
  • Richard Audoly

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

  • Adrien Vogt-Schilb

    (The World Bank - The World Bank, CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

  • Céline Guivarch

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper covers three policy-relevant aspects of the carbon content of elec-tricity that are well established among integrated assessment models but under-discussed in the policy debate. First, climate stabilization at any level from 2 • C to 3 • C requires electricity to be almost carbon-free by the end of the century. As such, the question for policy makers is not whether to decarbonize electricity but when to do it. Second, decarbonization of electricity is still possible and required if some of the key zero-carbon technologies — such as nuclear power or carbon capture and storage — turn out to be unavailable. Third, progres-sive decarbonization of electricity is part of every country's cost-effective means of contributing to climate stabilization. In addition, this paper provides cost-effective pathways of the carbon content of electricity — computed from the results of AMPERE, a recent integrated assessment model comparison study. These pathways may be used to benchmark existing decarbonization targets, such as those set by the European Energy Roadmap or the Clean Power Plan in the United States, or inform new policies in other countries. These pathways can also be used to assess the desirable uptake rates of electrification technolo-gies, such as electric and plug-in hybrid vehicles, electric stoves and heat pumps, or industrial electric furnaces.

Suggested Citation

  • Richard Audoly & Adrien Vogt-Schilb & Céline Guivarch, 2014. "Pathways toward Zero-Carbon Electricity Required for Climate Stabilization," CIRED Working Papers hal-01079837, HAL.
  • Handle: RePEc:hal:ciredw:hal-01079837
    Note: View the original document on HAL open archive server: https://enpc.hal.science/hal-01079837
    as

    Download full text from publisher

    File URL: https://enpc.hal.science/hal-01079837/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    2. Brouwer, Anne Sjoerd & van den Broek, Machteld & Zappa, William & Turkenburg, Wim C. & Faaij, André, 2016. "Least-cost options for integrating intermittent renewables in low-carbon power systems," Applied Energy, Elsevier, vol. 161(C), pages 48-74.
    3. Peng, Wei & Yang, Junnan & Lu, Xi & Mauzerall, Denise L., 2018. "Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China," Applied Energy, Elsevier, vol. 218(C), pages 511-519.
    4. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
    5. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    6. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    7. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    8. Guivarch, Céline & Hallegatte, Stéphane & Crassous, Renaud, 2009. "The resilience of the Indian economy to rising oil prices as a validation test for a global energy-environment-economy CGE model," Energy Policy, Elsevier, vol. 37(11), pages 4259-4266, November.
    9. Ottmar Edenhofer & Brigitte Knopf & Terry Barker & Lavinia Baumstark & Elie Bellevrat & Bertrand Chateau & Patrick Criqui & Morna Isaac & Alban Kitous & Socrates Kypreos & Marian Leimbach & Kai Lessma, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, , vol. 31(1_suppl), pages 11-48, June.
    10. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    11. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions," Applied Energy, Elsevier, vol. 88(7), pages 2315-2323, July.
    12. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(2), pages 129-130, November.
    13. Ou, Yang & Shi, Wenjing & Smith, Steven J. & Ledna, Catherine M. & West, J. Jason & Nolte, Christopher G. & Loughlin, Daniel H., 2018. "Estimating environmental co-benefits of U.S. low-carbon pathways using an integrated assessment model with state-level resolution," Applied Energy, Elsevier, vol. 216(C), pages 482-493.
    14. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    15. Pfeiffer, Alexander & Millar, Richard & Hepburn, Cameron & Beinhocker, Eric, 2016. "The ‘2°C capital stock’ for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy," Applied Energy, Elsevier, vol. 179(C), pages 1395-1408.
    16. Adrien Vogt-Schilb & Céline Guivarch & Jean Charles Hourcade, 2013. "Les véhicules électrifiés réduisent-ils les émissions de carbone ? Un raisonnement prospectif," CIRED Working Papers hal-00866450, HAL.
    17. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    18. Guivarch, Celine & Hallegatte, Stephane, 2011. "2C or Not 2C?," Climate Change and Sustainable Development 120019, Fondazione Eni Enrico Mattei (FEEM).
    19. Lewis, Anne Marie & Kelly, Jarod C. & Keoleian, Gregory A., 2014. "Vehicle lightweighting vs. electrification: Life cycle energy and GHG emissions results for diverse powertrain vehicles," Applied Energy, Elsevier, vol. 126(C), pages 13-20.
    20. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    21. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    22. Anasis, John G. & Khalil, Mohammad Aslam Khan & Butenhoff, Christopher & Bluffstone, Randall & Lendaris, George G., 2018. "A Combined Energy and Geoengineering Optimization Model (CEAGOM) for climate and energy policy analysis," Applied Energy, Elsevier, vol. 218(C), pages 246-255.
    23. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(3), pages 243-243, December.
    24. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
    25. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    26. Ottmar Edenhofer , Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Chateau, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertra, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    27. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    28. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    29. David McCollum & Volker Krey & Peter Kolp & Yu Nagai & Keywan Riahi, 2014. "Transport electrification: A key element for energy system transformation and climate stabilization," Climatic Change, Springer, vol. 123(3), pages 651-664, April.
    30. Céline Guivarch, 2012. "2°C or not 2°C?," Post-Print halshs-00757079, HAL.
    31. Volker Krey & Gunnar Luderer & Leon Clarke & Elmar Kriegler, 2014. "Getting from here to there – energy technology transformation pathways in the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 369-382, April.
    32. Adrien Vogt-Schilb & Céline Guivarch & Jean Charles Hourcade, 2013. "Les véhicules électrifiés réduiront-ils les émissions de carbone ?," Post-Print hal-00786749, HAL.
    33. Elmar Kriegler & John Weyant & Geoffrey Blanford & Volker Krey & Leon Clarke & Jae Edmonds & Allen Fawcett & Gunnar Luderer & Keywan Riahi & Richard Richels & Steven Rose & Massimo Tavoni & Detlef Vuu, 2014. "The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies," Climatic Change, Springer, vol. 123(3), pages 353-367, April.
    34. Steven Rose & Elmar Kriegler & Ruben Bibas & Katherine Calvin & Alexander Popp & Detlef Vuuren & John Weyant, 2014. "Bioenergy in energy transformation and climate management," Climatic Change, Springer, vol. 123(3), pages 477-493, April.
    35. Sugiyama, Masahiro, 2012. "Climate change mitigation and electrification," Energy Policy, Elsevier, vol. 44(C), pages 464-468.
    36. Vögele, Stefan & Rübbelke, Dirk & Mayer, Philip & Kuckshinrichs, Wilhelm, 2018. "Germany’s “No” to carbon capture and storage: Just a question of lacking acceptance?," Applied Energy, Elsevier, vol. 214(C), pages 205-218.
    37. repec:hal:wpaper:hal-00786749 is not listed on IDEAS
    38. C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
    39. Ruben Bibas & Aurélie Méjean, 2014. "Potential and limitations of bioenergy for low carbon transitions," Climatic Change, Springer, vol. 123(3), pages 731-761, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jun & Hamdi-Cherif, Meriem & Cassen, Christophe, 2017. "Aligning domestic policies with international coordination in a post-Paris global climate regime: A case for China," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 258-274.
    2. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    3. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    4. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    5. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    6. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    7. Cohen, Francois & Pfeiffer, Alexander, 2018. "The Impact of Negative Emissions Technologies and Natural Climate Solutions on Power-Sector Asset Stranding," INET Oxford Working Papers 2018-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    8. Ajay Gambhir & Laurent Drouet & David McCollum & Tamaryn Napp & Dan Bernie & Adam Hawkes & Oliver Fricko & Petr Havlik & Keywan Riahi & Valentina Bosetti & Jason Lowe, 2017. "Assessing the Feasibility of Global Long-Term Mitigation Scenarios," Energies, MDPI, vol. 10(1), pages 1-31, January.
    9. Ulrike Kornek & Jan Christoph Steckel & Kai Lessmann & Ottmar Edenhofer, 2017. "The climate rent curse: new challenges for burden sharing," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 17(6), pages 855-882, December.
    10. Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
    11. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    12. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    13. Guivarch, Celine & Monjon, Stéphanie, 2016. "Energy security in a low-carbon world: Identifying the main uncertain drivers of energy security in Europe," Conference papers 332807, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    15. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    16. P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
    17. Volker Krey & Gunnar Luderer & Leon Clarke & Elmar Kriegler, 2014. "Getting from here to there – energy technology transformation pathways in the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 369-382, April.
    18. Elmar Kriegler & John Weyant & Geoffrey Blanford & Volker Krey & Leon Clarke & Jae Edmonds & Allen Fawcett & Gunnar Luderer & Keywan Riahi & Richard Richels & Steven Rose & Massimo Tavoni & Detlef Vuu, 2014. "The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies," Climatic Change, Springer, vol. 123(3), pages 353-367, April.
    19. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.

    More about this item

    Keywords

    climate change mitigation; life cycle assessment; power supply; carbon intensity JEL: Q01; Q4; Q54; Q56;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:ciredw:hal-01079837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.