IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v68y2017i3d10.1007_s10640-016-0053-z.html
   My bibliography  Save this article

Energy Transition Under Irreversibility: A Two-Sector Approach

Author

Listed:
  • Prudence Dato

    (IREGE, University of Savoie)

Abstract

This paper analyses the optimal energy transition of a two-sector economy (energy and final goods) under irreversible environmental catastrophe. First, it proposes a general appraisal of optimal switching problems related to energy transition showing: (1) the possibility of a catastrophe due to accumulation of pollution; and (2) technological regimes with the adoption of renewable energy. Second, it numerically shows that for given baseline parameter values, the most profitable energy transition path may correspond to the one in which the economy starts using both resources, crosses the pollution threshold by losing a part of its capital, and never adopts only clean energy. Third, it extends the model to allow for additional investment in energy saving technologies. We then find that this additional investment favours full transition to the sole use of renewable energy. It is then profitable to take advantage of these synergies by jointly promoting deployment of clean energy and providing incentives for investment in energy saving technologies.

Suggested Citation

  • Prudence Dato, 2017. "Energy Transition Under Irreversibility: A Two-Sector Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 797-820, November.
  • Handle: RePEc:kap:enreec:v:68:y:2017:i:3:d:10.1007_s10640-016-0053-z
    DOI: 10.1007/s10640-016-0053-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-016-0053-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-016-0053-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Boucekkine, R. & Pommeret, A. & Prieur, F., 2013. "Optimal regime switching and threshold effects," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2979-2997.
    2. Prieur, Fabien & Tidball, Mabel & Withagen, Cees, 2013. "Optimal emission-extraction policy in a world of scarcity and irreversibility," Resource and Energy Economics, Elsevier, vol. 35(4), pages 637-658.
    3. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    4. Krautkraemer, Jeffrey A., 1986. "Optimal depletion with resource amenities and a backstop technology," Resources and Energy, Elsevier, vol. 8(2), pages 133-149, June.
    5. de Groot, Henri L. F. & Verhoef, Erik T. & Nijkamp, Peter, 2001. "Energy saving by firms: decision-making, barriers and policies," Energy Economics, Elsevier, vol. 23(6), pages 717-740, November.
    6. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    7. Amigues, Jean-Pierre & Kama, Alain Ayong Le & Moreaux, Michel, 2015. "Equilibrium transitions from non-renewable energy to renewable energy under capacity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 89-112.
    8. Pindyck, Robert S., 2002. "Optimal timing problems in environmental economics," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1677-1697, August.
    9. Tsur, Yacov & Zemel, Amos, 1996. "Accounting for global warming risks: Resource management under event uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 20(6-7), pages 1289-1305.
    10. Alain Ayong Le Kama & Aude Pommeret & Fabien Prieur, 2014. "Optimal Emission Policy under the Risk of Irreversible Pollution," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 16(6), pages 959-980, December.
    11. Tsur, Yacov & Zemel, Amos, 2005. "Scarcity, growth and R&D," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 484-499, May.
    12. Alain Ayong Le Kama & Aude Pommeret & Fabien Prieur, 2014. "Optimal Emission Policy under the Risk of Irreversible Pollution," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 16(6), pages 959-980, December.
    13. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    14. Fouquet, Roger, 2010. "The slow search for solutions: Lessons from historical energy transitions by sector and service," Energy Policy, Elsevier, vol. 38(11), pages 6586-6596, November.
    15. Naevdal, Eric, 2006. "Dynamic optimisation in the presence of threshold effects when the location of the threshold is uncertain - with an application to a possible disintegration of the Western Antarctic Ice Sheet," Journal of Economic Dynamics and Control, Elsevier, vol. 30(7), pages 1131-1158, July.
    16. Boucekkine, Raouf & Pommeret, Aude, 2004. "Energy saving technical progress and optimal capital stock: the role of embodiment," Economic Modelling, Elsevier, vol. 21(3), pages 429-444, May.
    17. Yacov Tsur & Cees Withagen, 2013. "Preparing for catastrophic climate change," Journal of Economics, Springer, vol. 110(3), pages 225-239, November.
    18. Alistair Ulph & David Ulph, "undated". "Global Warming, Irreversibility And Learning," ELSE working papers 056, ESRC Centre on Economics Learning and Social Evolution.
    19. Amigues, Jean-Pierre & Kama, Alain Ayong Le & Moreaux, Michel, 2015. "Equilibrium transitions from non-renewable energy to renewable energy under capacity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 89-112.
    20. Fabien Prieur, 2009. "The environmental Kuznets curve in a world of irreversibility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(1), pages 57-90, July.
    21. Chakravorty, Ujjayant & Magne, Bertrand & Moreaux, Michel, 2006. "A Hotelling model with a ceiling on the stock of pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2875-2904, December.
    22. Larry Karp & Jiangfeng Zhang, 2016. "Taxes Versus Quantities for a Stock Pollutant with Endogenous Abatement Costs and Asymmetric Information," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 493-533, Springer.
    23. Pommeret, Aude & Prieur, Fabien, 2009. "Double Irreversibility and Environmental Policy Design," Sustainable Development Papers 50359, Fondazione Eni Enrico Mattei (FEEM).
    24. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, September.
    25. Dasgupta, Partha & Stiglitz, Joseph, 1981. "Resource Depletion under Technological Uncertainty," Econometrica, Econometric Society, vol. 49(1), pages 85-104, January.
    26. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    27. Solomon, Barry D. & Krishna, Karthik, 2011. "The coming sustainable energy transition: History, strategies, and outlook," Energy Policy, Elsevier, vol. 39(11), pages 7422-7431.
    28. Chakravorty, Ujjayant & Roumasset, James & Tse, Kinping, 1997. "Endogenous Substitution among Energy Resources and Global Warming," Journal of Political Economy, University of Chicago Press, vol. 105(6), pages 1201-1234, December.
    29. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2012. "Cycles in nonrenewable resource prices with pollution and learning-by-doing," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1448-1461.
    30. Karp, Larry & Tsur, Yacov, 2008. "Time perspective and climate change policy," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt04k4b21g, Department of Agricultural & Resource Economics, UC Berkeley.
    31. Ayres, Robert U., 2007. "On the practical limits to substitution," Ecological Economics, Elsevier, vol. 61(1), pages 115-128, February.
    32. Ujjayant Chakravorty & Michel Moreaux & Mabel Tidball, 2008. "Ordering the Extraction of Polluting Nonrenewable Resources," American Economic Review, American Economic Association, vol. 98(3), pages 1128-1144, June.
    33. Gjerde, Jon & Grepperud, Sverre & Kverndokk, Snorre, 1999. "Optimal climate policy under the possibility of a catastrophe," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 289-317, August.
    34. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2013. "Global solar electric potential: A review of their technical and sustainable limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 824-835.
    35. Fabien Prieur & Mabel Tidball & Cees Withagen, 2013. "Optimal extraction-emission policy in a world of scarcity and irreversibility," Post-Print hal-01549824, HAL.
    36. Tsur, Yacov & Zemel, Amos, 2003. "Optimal transition to backstop substitutes for nonrenewable resources," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 551-572, February.
    37. Tahvonen, Olli & Withagen, Cees, 1996. "Optimality of irreversible pollution accumulation," Journal of Economic Dynamics and Control, Elsevier, vol. 20(9-10), pages 1775-1795.
    38. Dorothée Charlier & Alejandro Mosino & Aude Pommeret, 2011. "Energy-saving Technology Adoption under Uncertainty in the Residential Sector," Annals of Economics and Statistics, GENES, issue 103-104, pages 43-70.
    39. Ulph, Alistair & Ulph, David, 1997. "Global Warming, Irreversibility and Learning," Economic Journal, Royal Economic Society, vol. 107(442), pages 636-650, May.
    40. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, September.
    41. Olli Tahvonen, 1997. "Fossil Fuels, Stock Externalities, and Backstop Technology," Canadian Journal of Economics, Canadian Economics Association, vol. 30(4), pages 855-874, November.
    42. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2011. "Global wind power potential: Physical and technological limits," Energy Policy, Elsevier, vol. 39(10), pages 6677-6682, October.
    43. Lafforgue, Gilles & Magné, Bertrand & Moreaux, Michel, 2006. "Optimal Sequestration Policy with a Ceiling on the Stock of Carbon in the Atmosphere," IDEI Working Papers 401, Institut d'Économie Industrielle (IDEI), Toulouse.
    44. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    45. Puch, Luis A., 2013. "A theory of vintage capital investment and energy use," UC3M Working papers. Economics we1320, Universidad Carlos III de Madrid. Departamento de Economía.
    46. Douglas Hanley & Daron Acemoglu & Ufuk Akcigit & William Kerr, 2014. "Transition to Clean Technology," Working Paper 534, Department of Economics, University of Pittsburgh, revised Jan 2014.
    47. Karp, Larry & Tsur, Yacov, 2011. "Time perspective and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 62(1), pages 1-14, July.
    48. repec:adr:anecst:y:2011:i:103-104:p:04 is not listed on IDEAS
    49. Pindyck, Robert S & Rotemberg, Julio J, 1983. "Dynamic Factor Demands and the Effects of Energy Price Shocks," American Economic Review, American Economic Association, vol. 73(5), pages 1066-1079, December.
    50. Forster, Bruce A., 1975. "Optimal pollution control with a nonconstant exponential rate of decay," Journal of Environmental Economics and Management, Elsevier, vol. 2(1), pages 1-6, September.
    51. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    52. Tahvonen, Olli, 1996. "Trade with Polluting Nonrenewable Resources," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 1-17, January.
    53. Frederick Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 283-311, February.
    54. Kollenbach, Gilbert, 2013. "Endogenous Growth with a Ceiling on the Stock of Pollution," MPRA Paper 50641, University Library of Munich, Germany.
    55. Jeffrey A. Krautkraemer, 1998. "Nonrenewable Resource Scarcity," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2065-2107, December.
    56. Michielsen, Thomas O., 2014. "Brown backstops versus the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 87-110.
    57. Clarke, Harry R. & Reed, William J., 1994. "Consumption/pollution tradeoffs in an environment vulnerable to pollution-related catastrophic collapse," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 991-1010, September.
    58. Cropper, M. L., 1976. "Regulating activities with catastrophic environmental effects," Journal of Environmental Economics and Management, Elsevier, vol. 3(1), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neetzow, Paul, 2021. "The effects of power system flexibility on the efficient transition to renewable generation," Applied Energy, Elsevier, vol. 283(C).
    2. Prudence Dato, 2018. "Investment in Energy Efficiency, Adoption of Renewable Energy and Household Behavior: Evidence from OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    3. Guo, Jian-Xin & Zhu, Kaiwei, 2021. "Implications for enterprise to adopt cleaner technology: From the perspective of energy market and commodity market," Research in International Business and Finance, Elsevier, vol. 57(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prieur, Fabien & Tidball, Mabel & Withagen, Cees, 2013. "Optimal emission-extraction policy in a world of scarcity and irreversibility," Resource and Energy Economics, Elsevier, vol. 35(4), pages 637-658.
    2. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
    3. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    4. van der Ploeg, Frederick, 2014. "Abrupt positive feedback and the social cost of carbon," European Economic Review, Elsevier, vol. 67(C), pages 28-41.
    5. Gilbert Kollenbach, 2019. "Unilateral climate policy and the green paradox: Extraction costs matter," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 1036-1083, August.
    6. van der Ploeg, Frederick, 2014. "Abrupt positive feedback and the social cost of carbon," European Economic Review, Elsevier, vol. 67(C), pages 28-41.

    More about this item

    Keywords

    Energy; Irreversibility; Pollution; Switch;
    All these keywords.

    JEL classification:

    • Q30 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - General
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:68:y:2017:i:3:d:10.1007_s10640-016-0053-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.