IDEAS home Printed from https://ideas.repec.org/p/fip/fedfwp/98669.html
   My bibliography  Save this paper

Local Projections

Author

Listed:
  • Òscar Jordà
  • Alan M. Taylor

Abstract

A central question in applied research is to estimate the effect of an exogenous intervention or shock on an outcome. The intervention can affect the outcome and controls on impact and over time. Moreover, there can be subsequent feedback between outcomes, controls and the intervention. Many of these interactions can be untangled using local projections. This method’s simplicity makes it a convenient and versatile tool in the empiricist’s kit, one that is generalizable to complex settings. This article reviews the state-of-the art for the practitioner, discusses best practices and possible extensions of local projections methods, along with their limitations.

Suggested Citation

  • Òscar Jordà & Alan M. Taylor, 2024. "Local Projections," Working Paper Series 2024-24, Federal Reserve Bank of San Francisco.
  • Handle: RePEc:fip:fedfwp:98669
    DOI: 10.24148/wp2024-24
    as

    Download full text from publisher

    File URL: https://www.frbsf.org/wp-content/uploads/wp2024-24.pdf
    File Function: Full text - article
    Download Restriction: no

    File URL: https://libkey.io/10.24148/wp2024-24?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alan J. Auerbach & Yuriy Gorodnichenko, 2012. "Measuring the Output Responses to Fiscal Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(2), pages 1-27, May.
    2. Christina D. Romer & David H. Romer, 2004. "A New Measure of Monetary Shocks: Derivation and Implications," American Economic Review, American Economic Association, vol. 94(4), pages 1055-1084, September.
    3. Taylor, Alan M. & Dube, Arindrajit & Girardi, Daniele & Jordà , Òscar, 2023. "A Local Projections Approach to Difference-in-Differences Event Studies," CEPR Discussion Papers 18141, C.E.P.R. Discussion Papers.
    4. Regis Barnichon & Geert Mesters, 2020. "Identifying Modern Macro Equations with Old Shocks," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(4), pages 2255-2298.
    5. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    6. Òscar Jordà & Martin Kornejew & Moritz Schularick & Alan M Taylor, 2022. "Zombies at Large? Corporate Debt Overhang and the Macroeconomy," The Review of Financial Studies, Society for Financial Studies, vol. 35(10), pages 4561-4586.
    7. Hall, Alastair R. & Inoue, Atsushi & Nason, James M. & Rossi, Barbara, 2012. "Information criteria for impulse response function matching estimation of DSGE models," Journal of Econometrics, Elsevier, vol. 170(2), pages 499-518.
    8. Òscar Jordà, 2009. "Simultaneous Confidence Regions for Impulse Responses," The Review of Economics and Statistics, MIT Press, vol. 91(3), pages 629-647, August.
    9. Andrew Mountford & Harald Uhlig, 2009. "What are the effects of fiscal policy shocks?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 960-992.
    10. Dhaene, Geert & Jochmans, Koen, 2016. "Bias-corrected estimation of panel vector autoregressions," Economics Letters, Elsevier, vol. 145(C), pages 98-103.
    11. Òscar Jordà & Alan M. Taylor, 2016. "The Time for Austerity: Estimating the Average Treatment Effect of Fiscal Policy," Economic Journal, Royal Economic Society, vol. 126(590), pages 219-255, February.
    12. Cloyne, James & Jordà , Òscar & Taylor, Alan M., 2023. "State-Dependent Local Projections: Understanding Impulse Response Heterogeneity," CEPR Discussion Papers 17903, C.E.P.R. Discussion Papers.
    13. Silvana Tenreyro & Gregory Thwaites, 2016. "Pushing on a String: US Monetary Policy Is Less Powerful in Recessions," American Economic Journal: Macroeconomics, American Economic Association, vol. 8(4), pages 43-74, October.
    14. Matteo Iacoviello, 2005. "House Prices, Borrowing Constraints, and Monetary Policy in the Business Cycle," American Economic Review, American Economic Association, vol. 95(3), pages 739-764, June.
    15. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
    16. Òscar Jordà & Moritz Schularick & Alan M. Taylor, 2017. "Macrofinancial History and the New Business Cycle Facts," NBER Macroeconomics Annual, University of Chicago Press, vol. 31(1), pages 213-263.
    17. Guerron-Quintana, Pablo & Inoue, Atsushi & Kilian, Lutz, 2017. "Impulse response matching estimators for DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 144-155.
    18. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    19. José Luis Montiel Olea & Mikkel Plagborg-Møller & Eric Qian & Christian K. Wolf, 2024. "Double Robustness of Local Projections and Some Unpleasant VARithmetic," NBER Working Papers 32495, National Bureau of Economic Research, Inc.
    20. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    21. Clément de Chaisemartin & Xavier D’Haultfœuille, 2023. "Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: a survey," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 1-30.
    22. Dake Li & Mikkel Plagborg-Møller & Christian K. Wolf, 2021. "Local Projections vs. VARs: Lessons From Thousands of DGPs," Working Papers 2021-55, Princeton University. Economics Department..
    23. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Autoregressive Processes with Possible Unit Roots," Econometrica, Econometric Society, vol. 70(1), pages 377-391, January.
    24. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    25. Regis Barnichon & Christian Brownlees, 2019. "Impulse Response Estimation by Smooth Local Projections," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 522-530, July.
    26. Julio J. Rotemberg & Michael Woodford, 1997. "An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 297-361, National Bureau of Economic Research, Inc.
    27. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    28. Piergiorgio Alessandri & Fabrizio Venditti & Oscar JordÃ, 2023. "Decomposing the monetary policy multiplier," Temi di discussione (Economic working papers) 1422, Bank of Italy, Economic Research and International Relations Area.
    29. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    30. James Cloyne & Patrick Hürtgen, 2016. "The Macroeconomic Effects of Monetary Policy: A New Measure for the United Kingdom," American Economic Journal: Macroeconomics, American Economic Association, vol. 8(4), pages 75-102, October.
    31. Alessandro Barattieri & Matteo Cacciatore, 2023. "Self-Harming Trade Policy? Protectionism and Production Networks," American Economic Journal: Macroeconomics, American Economic Association, vol. 15(2), pages 97-128, April.
    32. Mikkel Plagborg-Møller & Christian K. Wolf, 2022. "Instrumental Variable Identification of Dynamic Variance Decompositions," Journal of Political Economy, University of Chicago Press, vol. 130(8), pages 2164-2202.
    33. Arindrajit Dube & Daniele Girardi & Òscar Jordà & Alan M. Taylor, 2023. "A Local Projections Approach to Difference-in-Differences," NBER Working Papers 31184, National Bureau of Economic Research, Inc.
    34. Ke-Li Xu, 2023. "Local Projection Based Inference under General Conditions," CAEPR Working Papers 2023-001 Classification-C, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    35. Ludger Linnemann & Roland Winkler, 2016. "Estimating nonlinear effects of fiscal policy using quantile regression methods," Oxford Economic Papers, Oxford University Press, vol. 68(4), pages 1120-1145.
    36. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    37. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    38. Inoue, Atsushi & Kilian, Lutz, 2020. "The uniform validity of impulse response inference in autoregressions," Journal of Econometrics, Elsevier, vol. 215(2), pages 450-472.
    39. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
    40. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    41. Pesavento, Elena & Rossi, Barbara, 2007. "Impulse response confidence intervals for persistent data: What have we learned?," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2398-2412, July.
    42. Jos'e Luis Montiel Olea & Mikkel Plagborg-M{o}ller & Eric Qian & Christian K. Wolf, 2024. "Double Robustness of Local Projections and Some Unpleasant VARithmetic," Papers 2405.09509, arXiv.org, revised Aug 2024.
    43. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    44. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245, Elsevier.
    45. Joshua D. Angrist & Guido M. Kuersteiner, 2011. "Causal Effects of Monetary Shocks: Semiparametric Conditional Independence Tests with a Multinomial Propensity Score," The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 725-747, August.
    46. Masahiro Tanaka, 2020. "Bayesian Inference of Local Projections with Roughness Penalty Priors," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 629-651, February.
    47. James H. Stock & Mark W. Watson, 2018. "Identification and Estimation of Dynamic Causal Effects in Macroeconomics Using External Instruments," Economic Journal, Royal Economic Society, vol. 128(610), pages 917-948, May.
    48. Gonçalves, Sílvia & Herrera, Ana María & Kilian, Lutz & Pesavento, Elena, 2024. "State-dependent local projections," Journal of Econometrics, Elsevier, vol. 244(2).
    49. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    50. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, January.
    51. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    52. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    53. Elena Pesavento & Barbara Rossi, 2006. "Small‐sample confidence intervals for multivariate impulse response functions at long horizons," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1135-1155, December.
    54. repec:hal:spmain:info:hdl:2441/7si2u15cul9u5a44sevcgkbaa9 is not listed on IDEAS
    55. Ryan Chahrour & Kyle Jurado, 2022. "Recoverability and Expectations-Driven Fluctuations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(1), pages 214-239.
    56. Valerie A. Ramey & Sarah Zubairy, 2018. "Government Spending Multipliers in Good Times and in Bad: Evidence from US Historical Data," Journal of Political Economy, University of Chicago Press, vol. 126(2), pages 850-901.
    57. Li, Dake & Plagborg-Møller, Mikkel & Wolf, Christian K., 2024. "Local projections vs. VARs: Lessons from thousands of DGPs," Journal of Econometrics, Elsevier, vol. 244(2).
    58. Òscar Jordà & Sharon Kozicki, 2011. "Estimation And Inference By The Method Of Projection Minimum Distance: An Application To The New Keynesian Hybrid Phillips Curve," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(2), pages 461-487, May.
    59. Phillips, Peter C. B., 1998. "Impulse response and forecast error variance asymptotics in nonstationary VARs," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 21-56.
    60. Lutz Kilian, 1999. "Finite-Sample Properties of Percentile and Percentile-t Bootstrap Confidence Intervals for Impulse Responses," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 652-660, November.
    61. Evans, G B A & Savin, N E, 1981. "Testing for Unit Roots: 1," Econometrica, Econometric Society, vol. 49(3), pages 753-779, May.
    62. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    63. Jaime Guajardo & Daniel Leigh & Andrea Pescatori, 2014. "Expansionary Austerity? International Evidence," Journal of the European Economic Association, European Economic Association, vol. 12(4), pages 949-968, August.
    64. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    65. Régis Barnichon & Geert Mesters, 2023. "A Sufficient Statistics Approach for Macro Policy," American Economic Review, American Economic Association, vol. 113(11), pages 2809-2845, November.
    66. Dhaene, Geert & Jochmans, Koen, 2016. "Bias-corrected estimation of panel vector autoregressions," Economics Letters, Elsevier, vol. 145(C), pages 98-103.
    67. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    68. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2021. "The Wild Bootstrap with a “Small” Number of “Large” Clusters," The Review of Economics and Statistics, MIT Press, vol. 103(2), pages 346-363, May.
    69. Barnichon, Regis & Matthes, Christian, 2018. "Functional Approximation of Impulse Responses," Journal of Monetary Economics, Elsevier, vol. 99(C), pages 41-55.
    70. José Luis Montiel Olea & Mikkel Plagborg‐Møller, 2019. "Simultaneous confidence bands: Theory, implementation, and an application to SVARs," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(1), pages 1-17, January.
    71. Pao-Li Chang & Shinichi Sakata, 2007. "Estimation of impulse response functions using long autoregression," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 453-469, July.
    72. Ziwei Mei & Liugang Sheng & Zhentao Shi, 2023. "Nickell Bias in Panel Local Projection: Financial Crises Are Worse Than You Think," Papers 2302.13455, arXiv.org, revised Oct 2023.
    73. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    74. Harald Uhlig, 2010. "Some Fiscal Calculus," American Economic Review, American Economic Association, vol. 100(2), pages 30-34, May.
    75. Herbst, Edward P. & Johannsen, Benjamin K., 2024. "Bias in local projections," Journal of Econometrics, Elsevier, vol. 240(1).
    76. José Luis Montiel Olea & Mikkel Plagborg‐Møller, 2021. "Local Projection Inference Is Simpler and More Robust Than You Think," Econometrica, Econometric Society, vol. 89(4), pages 1789-1823, July.
    77. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atsushi Inoue & `Oscar Jord`a & Guido M. Kuersteiner, 2023. "Inference for Local Projections," Papers 2306.03073, arXiv.org, revised Aug 2024.
    2. Endong Wang, 2024. "Structural counterfactual analysis in macroeconomics: theory and inference," Papers 2409.09577, arXiv.org.
    3. Cloyne, James & Jordà , Òscar & Taylor, Alan M., 2023. "State-Dependent Local Projections: Understanding Impulse Response Heterogeneity," CEPR Discussion Papers 17903, C.E.P.R. Discussion Papers.
    4. James Cloyne & Òscar Jordà & Alan M. Taylor, 2020. "Decomposing the Fiscal Multiplier," Working Paper Series 2020-12, Federal Reserve Bank of San Francisco.
    5. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    6. Inoue, Atsushi & Kilian, Lutz, 2020. "The uniform validity of impulse response inference in autoregressions," Journal of Econometrics, Elsevier, vol. 215(2), pages 450-472.
    7. Ho, Paul & Lubik, Thomas A. & Matthes, Christian, 2024. "Averaging impulse responses using prediction pools," Journal of Monetary Economics, Elsevier, vol. 146(C).
    8. José Luis Montiel Olea & Mikkel Plagborg‐Møller, 2021. "Local Projection Inference Is Simpler and More Robust Than You Think," Econometrica, Econometric Society, vol. 89(4), pages 1789-1823, July.
    9. Checherita-Westphal, Cristina & Pesso, Tom, 2024. "Fiscal policy and inflation: accounting for non-linearities in government debt," Working Paper Series 2996, European Central Bank.
    10. Kopecky, Joseph, 2022. "The age for austerity? Population age structure and fiscal consolidation multipliers," Journal of Macroeconomics, Elsevier, vol. 73(C).
    11. Bruns, Martin & Lütkepohl, Helmut, 2022. "Comparison of local projection estimators for proxy vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    12. Alloza, Mario & Sanz, Carlos, 2019. "Dynamic Effects of Persistent Shocks," UC3M Working papers. Economics 29187, Universidad Carlos III de Madrid. Departamento de Economía.
    13. ChaeWon Baek & Byoungchan Lee, 2022. "A Guide to Autoregressive Distributed Lag Models for Impulse Response Estimations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1101-1122, October.
    14. Joseph Kopecky, 2021. "The Age for Austerity? Population Age Structure and Fiscal Multipliers," Trinity Economics Papers tep1621, Trinity College Dublin, Department of Economics.
    15. Kilian, Lutz & Kim, Yun Jung, 2009. "Do Local Projections Solve the Bias Problem in Impulse Response Inference?," CEPR Discussion Papers 7266, C.E.P.R. Discussion Papers.
    16. Juan R. Hernández & Mateo Hoyos & Daniel Ventosa-Santaulària, 2024. "Monetary Policy in Emerging Markets under Global Uncertainty," Working Papers DTE 634, CIDE, División de Economía.
    17. Oscar Jorda & Alan Taylor & Sanjay Singh, 2019. "The Long-Run Effects of Monetary Policy," 2019 Meeting Papers 1307, Society for Economic Dynamics.
    18. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    19. Mario Di Serio & Matteo Fragetta & Emanuel Gasteiger & Giovanni Melina, 2022. "The Euro Area Government Spending Multiplier in Demand- and Supply-Driven Recessions," CESifo Working Paper Series 9678, CESifo.
    20. Ferrara, Laurent & Metelli, Luca & Natoli, Filippo & Siena, Daniele, 2021. "Questioning the puzzle: Fiscal policy, real exchange rate and inflation," Journal of International Economics, Elsevier, vol. 133(C).

    More about this item

    Keywords

    local projections; impulse response; multipliers; bias; inference; instrumental variables; policy evaluation; Kitagawa decomposition; panel data;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedfwp:98669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Federal Reserve Bank of San Francisco Research Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbsfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.