IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.03073.html
   My bibliography  Save this paper

Inference for Local Projections

Author

Listed:
  • Atsushi Inoue
  • `Oscar Jord`a
  • Guido M. Kuersteiner

Abstract

Inference for impulse responses estimated with local projections presents interesting challenges and opportunities. Analysts typically want to assess the precision of individual estimates, explore the dynamic evolution of the response over particular regions, and generally determine whether the impulse generates a response that is any different from the null of no effect. Each of these goals requires a different approach to inference. In this article, we provide an overview of results that have appeared in the literature in the past 20 years along with some new procedures that we introduce here.

Suggested Citation

  • Atsushi Inoue & `Oscar Jord`a & Guido M. Kuersteiner, 2023. "Inference for Local Projections," Papers 2306.03073, arXiv.org, revised Aug 2024.
  • Handle: RePEc:arx:papers:2306.03073
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.03073
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Inoue, Atsushi & Kilian, Lutz, 2013. "Inference on impulse response functions in structural VAR models," Journal of Econometrics, Elsevier, vol. 177(1), pages 1-13.
    2. Michael D. Bauer & Eric T. Swanson, 2023. "A Reassessment of Monetary Policy Surprises and High-Frequency Identification," NBER Macroeconomics Annual, University of Chicago Press, vol. 37(1), pages 87-155.
    3. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2021. "Bayesian Local Projections," The Warwick Economics Research Paper Series (TWERPS) 1348, University of Warwick, Department of Economics.
    4. Dhaene, Geert & Jochmans, Koen, 2016. "Bias-corrected estimation of panel vector autoregressions," Economics Letters, Elsevier, vol. 145(C), pages 98-103.
    5. Inoue, Atsushi & Kilian, Lutz, 2016. "Joint confidence sets for structural impulse responses," Journal of Econometrics, Elsevier, vol. 192(2), pages 421-432.
    6. Joshua D. Angrist & Guido M. Kuersteiner, 2011. "Causal Effects of Monetary Shocks: Semiparametric Conditional Independence Tests with a Multinomial Propensity Score," The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 725-747, August.
    7. Masahiro Tanaka, 2020. "Bayesian Inference of Local Projections with Roughness Penalty Priors," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 629-651, February.
    8. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    9. Mikkel Plagborg-Møller & Christian K. Wolf, 2022. "Instrumental Variable Identification of Dynamic Variance Decompositions," Journal of Political Economy, University of Chicago Press, vol. 130(8), pages 2164-2202.
    10. James H. Stock & Mark W. Watson, 2018. "Identification and Estimation of Dynamic Causal Effects in Macroeconomics Using External Instruments," Economic Journal, Royal Economic Society, vol. 128(610), pages 917-948, May.
    11. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    12. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    13. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    14. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    15. Dhaene, Geert & Jochmans, Koen, 2016. "Bias-corrected estimation of panel vector autoregressions," Economics Letters, Elsevier, vol. 145(C), pages 98-103.
    16. Inoue, Atsushi & Kilian, Lutz, 2020. "The uniform validity of impulse response inference in autoregressions," Journal of Econometrics, Elsevier, vol. 215(2), pages 450-472.
    17. Dake Li & Mikkel Plagborg-Møller & Christian K. Wolf, 2021. "Local Projections vs. VARs: Lessons From Thousands of DGPs," Working Papers 2021-55, Princeton University. Economics Department..
    18. Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.
    19. Christina D. Romer & David H. Romer, 2004. "A New Measure of Monetary Shocks: Derivation and Implications," American Economic Review, American Economic Association, vol. 94(4), pages 1055-1084, September.
    20. Regis Barnichon & Christian Brownlees, 2019. "Impulse Response Estimation by Smooth Local Projections," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 522-530, July.
    21. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    22. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    23. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2021. "The Wild Bootstrap with a “Small†Number of “Large†Clusters," The Review of Economics and Statistics, MIT Press, vol. 103(2), pages 346-363, May.
    24. Òscar Jordà, 2009. "Simultaneous Confidence Regions for Impulse Responses," The Review of Economics and Statistics, MIT Press, vol. 91(3), pages 629-647, August.
    25. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Autoregressive Processes with Possible Unit Roots," Econometrica, Econometric Society, vol. 70(1), pages 377-391, January.
    26. Jinyong Hahn & David W. Hughes & Guido Kuersteiner & Whitney K. Newey, 2024. "Efficient bias correction for cross‐section and panel data," Quantitative Economics, Econometric Society, vol. 15(3), pages 783-816, July.
    27. Ke-Li Xu, 2023. "Local Projection Based Inference under General Conditions," CAEPR Working Papers 2023-001 Classification-C, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    28. Barnichon, Regis & Matthes, Christian, 2018. "Functional Approximation of Impulse Responses," Journal of Monetary Economics, Elsevier, vol. 99(C), pages 41-55.
    29. Ziwei Mei & Liugang Sheng & Zhentao Shi, 2023. "Nickell Bias in Panel Local Projection: Financial Crises Are Worse Than You Think," Papers 2302.13455, arXiv.org, revised Oct 2023.
    30. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    31. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
    32. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    33. repec:hal:spmain:info:hdl:2441/7si2u15cul9u5a44sevcgkbaa9 is not listed on IDEAS
    34. José Luis Montiel Olea & Mikkel Plagborg‐Møller, 2019. "Simultaneous confidence bands: Theory, implementation, and an application to SVARs," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(1), pages 1-17, January.
    35. José Luis Montiel Olea & Mikkel Plagborg‐Møller, 2021. "Local Projection Inference Is Simpler and More Robust Than You Think," Econometrica, Econometric Society, vol. 89(4), pages 1789-1823, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Òscar Jordà & Alan M. Taylor, 2024. "Local Projections," NBER Working Papers 32822, National Bureau of Economic Research, Inc.
    2. Endong Wang, 2024. "Structural counterfactual analysis in macroeconomics: theory and inference," Papers 2409.09577, arXiv.org.
    3. José Luis Montiel Olea & Mikkel Plagborg‐Møller, 2021. "Local Projection Inference Is Simpler and More Robust Than You Think," Econometrica, Econometric Society, vol. 89(4), pages 1789-1823, July.
    4. Bulat Gafarov & Madina Karamysheva & Andrey Polbin & Anton Skrobotov, 2024. "Wild inference for wild SVARs with application to heteroscedasticity-based IV," Papers 2407.03265, arXiv.org, revised Nov 2024.
    5. Bruns, Martin & Lütkepohl, Helmut, 2022. "Comparison of local projection estimators for proxy vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    6. Pablo Aguilar Perez, 2024. "Global Spillovers of US Monetary Policy: New Insights from the Remittance Channel," EconomiX Working Papers 2024-27, University of Paris Nanterre, EconomiX.
    7. Atsushi Inoue & Òscar Jordà & Guido M. Kuersteiner, 2023. "Significance Bands for Local Projections," Working Paper Series 2023-15, Federal Reserve Bank of San Francisco.
    8. Inoue, Atsushi & Kilian, Lutz, 2020. "The uniform validity of impulse response inference in autoregressions," Journal of Econometrics, Elsevier, vol. 215(2), pages 450-472.
    9. Christis Katsouris, 2023. "Structural Analysis of Vector Autoregressive Models," Papers 2312.06402, arXiv.org, revised Feb 2024.
    10. Bonsoo Koo & Seojeong Lee & Myung Hwan Seo, 2022. "What Impulse Response Do Instrumental Variables Identify?," Papers 2208.11828, arXiv.org, revised Aug 2023.
    11. ChaeWon Baek & Byoungchan Lee, 2022. "A Guide to Autoregressive Distributed Lag Models for Impulse Response Estimations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1101-1122, October.
    12. Oscar Jorda & Alan Taylor & Sanjay Singh, 2019. "The Long-Run Effects of Monetary Policy," 2019 Meeting Papers 1307, Society for Economic Dynamics.
    13. Francisco Serranito & Philipp RODERWEIS & Jamel Saadaoui, 2023. "Is Quantitative Easing Productive? The Role of Bank Lending in the Monetary Transmission Process," EconomiX Working Papers 2023-17, University of Paris Nanterre, EconomiX.
    14. Ferrara, Laurent & Metelli, Luca & Natoli, Filippo & Siena, Daniele, 2021. "Questioning the puzzle: Fiscal policy, real exchange rate and inflation," Journal of International Economics, Elsevier, vol. 133(C).
    15. Francesco Furlanetto & Ørjan Robstad & Pål Ulvedal & Antoine Lepetit, 2020. "Estimating hysteresis effects," Working Paper 2020/13, Norges Bank.
    16. Maghyereh, Aktham & Abdoh, Hussein, 2021. "The effect of structural oil shocks on bank systemic risk in the GCC countries," Energy Economics, Elsevier, vol. 103(C).
    17. Chengwang Liao & Ziwei Mei & Zhentao Shi, 2024. "Nickell Meets Stambaugh: A Tale of Two Biases in Panel Predictive Regressions," Papers 2410.09825, arXiv.org.
    18. Leonardo Nogueira Ferreira, 2023. "Monetary Policy Surprises, Financial Conditions, and the String Theory Revisited," Working Papers Series 573, Central Bank of Brazil, Research Department.
    19. Dias, Daniel A. & Duarte, João B., 2015. "Monetary Policy and Homeownership: Empirical Evidence, Theory, and Policy Implications," MPRA Paper 112252, University Library of Munich, Germany, revised 05 Mar 2021.
    20. Aldasoro, Iñaki & Beltrán, Paula & Grinberg, Federico & Mancini-Griffoli, Tommaso, 2023. "The macro-financial effects of international bank lending on emerging markets," Journal of International Economics, Elsevier, vol. 142(C).

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.03073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.