IDEAS home Printed from https://ideas.repec.org/p/cda/wpaper/128.html
   My bibliography  Save this paper

Bootstrap-Based Improvements for Inference with Clustered Errors

Author

Listed:
  • Jonah B. Gelbach
  • Doug Miller
  • A. Colin Cameron

    (Department of Economics, University of California Davis)

Abstract

Microeconometrics researchers have increasingly realized the essential need to account for any within-group dependence in estimating standard errors of regression parameter estimates. The typical preferred solution is to calculate cluster-robust or sandwich standard errors that permit quite general heteroskedasticity and within-cluster error correlation, but presume that the number of clusters is large. In applications with few (5-30) clusters, standard asymptotic tests can over-reject considerably. We investigate more accurate inference using cluster bootstrap-t procedures that provide asymptotic refinement. These procedures are evaluated using Monte Carlos, including the much-cited differences-in-differences example of Bertrand, Mullainathan and Duflo (2004). In situations where standard methods lead to rejection rates in excess of ten percent (ormore) for tests of nominal size 0.05, our methods can reduce this to five percent. In principle a pairs cluster bootstrap should work well, but in practice a Wild cluster bootstrap performs better.

Suggested Citation

  • Jonah B. Gelbach & Doug Miller & A. Colin Cameron, 2006. "Bootstrap-Based Improvements for Inference with Clustered Errors," Working Papers 128, University of California, Davis, Department of Economics.
  • Handle: RePEc:cda:wpaper:128
    as

    Download full text from publisher

    File URL: https://repec.dss.ucdavis.edu/files/QpaWYKbXUsANCptT7guxmWaK/06-21.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James G. MacKinnon, 2002. "Bootstrap inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 35(4), pages 615-645, November.
    2. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    3. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    4. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    5. Chesher, Andrew & Austin, Gerard, 1991. "The finite-sample distributions of heteroskedasticity robust Wald statistics," Journal of Econometrics, Elsevier, vol. 47(1), pages 153-173, January.
    6. Franklin Satterthwaite, 1941. "Synthesis of variance," Psychometrika, Springer;The Psychometric Society, vol. 6(5), pages 309-316, October.
    7. Joshua D. Angrist & Victor Lavy, 2002. "The Effect of High School Matriculation Awards: Evidence from Randomized Trials," NBER Working Papers 9389, National Bureau of Economic Research, Inc.
    8. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
    9. Joel L. Horowitz, 1996. "Bootstrap Methods in Econometrics: Theory and Numerical Performance," Econometrics 9602009, University Library of Munich, Germany, revised 05 Mar 1996.
    10. Rothenberg, Thomas J, 1988. "Approximate Power Functions for Some Robust Tests of Regression Coefficients," Econometrica, Econometric Society, vol. 56(5), pages 997-1019, September.
    11. Arellano, M, 1987. "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 49(4), pages 431-434, November.
    12. Lloyd A. Mancl & Timothy A. DeRouen, 2001. "A Covariance Estimator for GEE with Improved Small‐Sample Properties," Biometrics, The International Biometric Society, vol. 57(1), pages 126-134, March.
    13. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    14. Jeffrey M. Wooldridge, 2003. "Cluster-Sample Methods in Applied Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 133-138, May.
    15. Horowitz, Joel L., 2001. "The Bootstrap," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 52, pages 3159-3228, Elsevier.
    16. Stephen G. Donald & Kevin Lang, 2007. "Inference with Difference-in-Differences and Other Panel Data," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 221-233, May.
    17. Michael Baker & Nicole M. Fortin, 2001. "Occupational gender composition and wages in Canada, 1987–1988," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 34(2), pages 345-376, May.
    18. Jonathan Gruber & James M. Poterba, 1993. "Tax Incentives and the Decision to Purchase Health Insurance: Evidence from the Self-Employed," NBER Working Papers 4435, National Bureau of Economic Research, Inc.
    19. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    20. Jonathan Gruber & James Poterba, 1994. "Tax Incentives and the Decision to Purchase Health Insurance: Evidence from the Self-Employed," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(3), pages 701-733.
    21. Greenwald, Bruce C., 1983. "A general analysis of bias in the estimated standard errors of least squares coefficients," Journal of Econometrics, Elsevier, vol. 22(3), pages 323-338, August.
    22. Cameron,A. Colin & Trivedi,Pravin K., 2005. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9780521848053, January.
    23. David Brownstone & Robert Valletta, 2001. "The Bootstrap and Multiple Imputations: Harnessing Increased Computing Power for Improved Statistical Tests," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 129-141, Fall.
    24. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
    25. Moulton, Brent R, 1990. "An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Unit," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 334-338, May.
    26. Kloek, T, 1981. "OLS Estimation in a Model Where a Microvariable Is Explained by Aggregates and Contemporaneous Disturbances Are Equicorrelated," Econometrica, Econometric Society, vol. 49(1), pages 205-207, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    2. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.
    3. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 318, University of California, Davis, Department of Economics.
    4. Matthew D. Webb, 2023. "Reworking wild bootstrap‐based inference for clustered errors," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(3), pages 839-858, August.
    5. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    6. Cameron, A. Colin & Gelbach, Jonah B. & Miller, Douglas L., 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 238-249.
    7. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    8. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    9. Antoine A. Djogbenou & James G. MacKinnon & Morten Ø. Nielsen, 2017. "Validity Of Wild Bootstrap Inference With Clustered Errors," Working Paper 1383, Economics Department, Queen's University.
    10. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    11. Jonah B. Gelbach & Doug Miller, 2009. "Robust Inference with Multi-way Clustering," Working Papers 226, University of California, Davis, Department of Economics.
    12. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    13. Vikström, Johan, 2009. "Cluster sample inference using sensitivity analysis: the case with few groups," Working Paper Series 2009:15, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    14. James G. MacKinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    15. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    16. Guido W. Imbens & Michal Kolesár, 2016. "Robust Standard Errors in Small Samples: Some Practical Advice," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 701-712, October.
    17. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2018. "The wild bootstrap with a "small" number of "large" clusters," CeMMAP working papers CWP27/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    19. Rok Spruk, 2019. "The rise and fall of Argentina," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 28(1), pages 1-40, December.
    20. Rok Spruk & Mitja Kovac, 2018. "Inefficient Growth," Review of Economics and Institutions, Università di Perugia, vol. 9(2).

    More about this item

    Keywords

    clustered errors; random effects; cluster robust; sandwich; bootstrap; bootstrap-t; clustered bootstrap; pairs bootstrap; wild bootstrap.;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cda:wpaper:128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Letters and Science IT Services Unit (email available below). General contact details of provider: https://edirc.repec.org/data/educdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.