HLOB–Information persistence and structure in limit order books
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zihao Zhang & Bryan Lim & Stefan Zohren, 2021. "Deep Learning for Market by Order Data," Papers 2102.08811, arXiv.org, revised Jul 2021.
- J. Doyne Farmer & Spyros Skouras, 2013. "An ecological perspective on the future of computer trading," Quantitative Finance, Taylor & Francis Journals, vol. 13(3), pages 325-346, February.
- Antonio Briola & Jeremy Turiel & Tomaso Aste, 2020. "Deep Learning modeling of Limit Order Book: a comparative perspective," Papers 2007.07319, arXiv.org, revised Oct 2020.
- M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007.
"Correlation based networks of equity returns sampled at different time horizons,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
- M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2006. "Correlation based networks of equity returns sampled at different time horizons," Papers physics/0605251, arXiv.org, revised Apr 2007.
- R. Mantegna, 1999.
"Hierarchical structure in financial markets,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
- R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
- Rosario N. Mantegna, 1998. "Hierarchical Structure in Financial Markets," Papers cond-mat/9802256, arXiv.org.
- Jain, Konark & Firoozye, Nick & Kochems, Jonathan & Treleaven, Philip, 2024.
"Limit Order Book dynamics and order size modelling using Compound Hawkes Process,"
Finance Research Letters, Elsevier, vol. 69(PA).
- Konark Jain & Nick Firoozye & Jonathan Kochems & Philip Treleaven, 2023. "Limit Order Book Dynamics and Order Size Modelling Using Compound Hawkes Process," Papers 2312.08927, arXiv.org, revised Aug 2024.
- Zihao Zhang & Bryan Lim & Stefan Zohren, 2021. "Deep Learning for Market by Order Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 28(1), pages 79-95, January.
- Damian Kisiel & Denise Gorse, 2022. "Axial-LOB: High-Frequency Trading with Axial Attention," Papers 2212.01807, arXiv.org.
- Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "Deep Limit Order Book Forecasting," Papers 2403.09267, arXiv.org, revised Jun 2024.
- Petter N. Kolm & Jeremy Turiel & Nicholas Westray, 2023. "Deep order flow imbalance: Extracting alpha at multiple horizons from the limit order book," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1044-1081, October.
- Justin A. Sirignano, 2019. "Deep learning for limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 549-570, April.
- James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
- Konark Jain & Jean-Franc{c}ois Muzy & Jonathan Kochems & Emmanuel Bacry, 2024. "No Tick-Size Too Small: A General Method for Modelling Small Tick Limit Order Books," Papers 2410.08744, arXiv.org, revised Nov 2024.
- Antonio Briola & Tomaso Aste, 2022. "Dependency structures in cryptocurrency market from high to low frequency," Papers 2206.03386, arXiv.org, revised Dec 2022.
- Rama Cont & Mihai Cucuringu & Chao Zhang, 2023. "Cross-impact of order flow imbalance in equity markets," Quantitative Finance, Taylor & Francis Journals, vol. 23(10), pages 1373-1393, October.
- Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Benchmark dataset for mid‐price forecasting of limit order book data with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 852-866, December.
- Rama Cont & Mihai Cucuringu & Chao Zhang, 2021. "Cross-Impact of Order Flow Imbalance in Equity Markets," Papers 2112.13213, arXiv.org, revised Jun 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "HLOB -- Information Persistence and Structure in Limit Order Books," Papers 2405.18938, arXiv.org, revised Jun 2024.
- Zihao Zhang & Stefan Zohren, 2021. "Multi-Horizon Forecasting for Limit Order Books: Novel Deep Learning Approaches and Hardware Acceleration using Intelligent Processing Units," Papers 2105.10430, arXiv.org, revised Aug 2021.
- Petter N. Kolm & Jeremy Turiel & Nicholas Westray, 2023. "Deep order flow imbalance: Extracting alpha at multiple horizons from the limit order book," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1044-1081, October.
- Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "Deep Limit Order Book Forecasting," Papers 2403.09267, arXiv.org, revised Jun 2024.
- Ilia Zaznov & Julian Kunkel & Alfonso Dufour & Atta Badii, 2022. "Predicting Stock Price Changes Based on the Limit Order Book: A Survey," Mathematics, MDPI, vol. 10(8), pages 1-33, April.
- Zihao Zhang & Bryan Lim & Stefan Zohren, 2021. "Deep Learning for Market by Order Data," Papers 2102.08811, arXiv.org, revised Jul 2021.
- Yufei Wu & Mahmoud Mahfouz & Daniele Magazzeni & Manuela Veloso, 2021. "Towards Robust Representation of Limit Orders Books for Deep Learning Models," Papers 2110.05479, arXiv.org, revised Dec 2022.
- Matteo Prata & Giuseppe Masi & Leonardo Berti & Viviana Arrigoni & Andrea Coletta & Irene Cannistraci & Svitlana Vyetrenko & Paola Velardi & Novella Bartolini, 2023. "LOB-Based Deep Learning Models for Stock Price Trend Prediction: A Benchmark Study," Papers 2308.01915, arXiv.org, revised Sep 2023.
- Jiwon Jung & Kiseop Lee, 2024. "Attention-Based Reading, Highlighting, and Forecasting of the Limit Order Book," Papers 2409.02277, arXiv.org, revised Nov 2024.
- Abdul Rahman & Neelesh Upadhye, 2024. "Hybrid Vector Auto Regression and Neural Network Model for Order Flow Imbalance Prediction in High Frequency Trading," Papers 2411.08382, arXiv.org.
- Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
- Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
- Daniel Cunha Oliveira & Yutong Lu & Xi Lin & Mihai Cucuringu & Andre Fujita, 2024. "Causality-Inspired Models for Financial Time Series Forecasting," Papers 2408.09960, arXiv.org.
- Yang, Ming-Yuan & Wu, Zhen-Guo & Wu, Xin & Li, Sai-Ping, 2024. "Influential risk spreaders and systemic risk in Chinese financial networks," Emerging Markets Review, Elsevier, vol. 60(C).
- Larissa M. Batrancea & Mehmet Ali Balcı & Ömer Akgüller & Anca Nichita & Mircea-Iosif Rus, 2024. "Seismic shocks and financial systems: a topological perspective on Borsa Istanbul after the earthquake," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
- Kristoufek, Ladislav & Janda, Karel & Zilberman, David, 2012. "Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective," Energy Economics, Elsevier, vol. 34(5), pages 1380-1391.
- Gogas, Periklis & Papadimitriou, Theophilos & Matthaiou, Maria-Artemis, 2016. "Bank supervision using the Threshold-Minimum Dominating Set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 23-35.
- Seyed Soheil Hosseini & Nick Wormald & Tianhai Tian, 2019. "A Weight-based Information Filtration Algorithm for Stock-Correlation Networks," Papers 1904.06007, arXiv.org.
- Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010.
"Complex stock trading network among investors,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
- Zhi-Qiang Jiang & Wei-Xing Zhou, 2010. "Complex stock trading network among investors," Papers 1003.2459, arXiv.org, revised May 2010.
- Kumar, Sudarshan & Bansal, Avijit & Chakrabarti, Anindya S., 2019. "Ripples on financial networks," IIMA Working Papers WP 2019-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
More about this item
Keywords
deep learning; eEconophysics; High frequency trading; limit order book; market microstructure;All these keywords.
JEL classification:
- D50 - Microeconomics - - General Equilibrium and Disequilibrium - - - General
- D51 - Microeconomics - - General Equilibrium and Disequilibrium - - - Exchange and Production Economies
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-02-03 (Big Data)
- NEP-CMP-2025-02-03 (Computational Economics)
- NEP-MST-2025-02-03 (Market Microstructure)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:126623. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.