Deep Learning for Market by Order Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "BDLOB: Bayesian Deep Convolutional Neural Networks for Limit Order Books," Papers 1811.10041, arXiv.org.
- James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
- Antonio Briola & Jeremy Turiel & Tomaso Aste, 2020. "Deep Learning modeling of Limit Order Book: a comparative perspective," Papers 2007.07319, arXiv.org, revised Oct 2020.
- Mills,Terence C., 1991. "Time Series Techniques for Economists," Cambridge Books, Cambridge University Press, number 9780521405744, September.
- Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
- Peter Belcak & Jan-Peter Calliess & Stefan Zohren, 2020. "Fast Agent-Based Simulation Framework with Applications to Reinforcement Learning and the Study of Trading Latency Effects," Papers 2008.07871, arXiv.org, revised Sep 2022.
- Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
- Zihao Zhang & Stefan Zohren & Stephen Roberts, 2019. "Extending Deep Learning Models for Limit Order Books to Quantile Regression," Papers 1906.04404, arXiv.org.
- Antonio Briola & Jeremy Turiel & Riccardo Marcaccioli & Alvaro Cauderan & Tomaso Aste, 2021. "Deep Reinforcement Learning for Active High Frequency Trading," Papers 2101.07107, arXiv.org, revised Aug 2023.
- Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Benchmark dataset for midāprice forecasting of limit order book data with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 852-866, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Konark Jain & Nick Firoozye & Jonathan Kochems & Philip Treleaven, 2024. "Limit Order Book Simulations: A Review," Papers 2402.17359, arXiv.org, revised Mar 2024.
- Peer Nagy & Jan-Peter Calliess & Stefan Zohren, 2023. "Asynchronous Deep Double Duelling Q-Learning for Trading-Signal Execution in Limit Order Book Markets," Papers 2301.08688, arXiv.org, revised Sep 2023.
- Jian Guo & Heung-Yeung Shum, 2024. "Large Investment Model," Papers 2408.10255, arXiv.org, revised Aug 2024.
- Zihao Zhang & Stefan Zohren, 2021. "Multi-Horizon Forecasting for Limit Order Books: Novel Deep Learning Approaches and Hardware Acceleration using Intelligent Processing Units," Papers 2105.10430, arXiv.org, revised Aug 2021.
- Ilia Zaznov & Julian Kunkel & Alfonso Dufour & Atta Badii, 2022. "Predicting Stock Price Changes Based on the Limit Order Book: A Survey," Mathematics, MDPI, vol. 10(8), pages 1-33, April.
- Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "HLOB -- Information Persistence and Structure in Limit Order Books," Papers 2405.18938, arXiv.org, revised Jun 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zihao Zhang & Stefan Zohren, 2021. "Multi-Horizon Forecasting for Limit Order Books: Novel Deep Learning Approaches and Hardware Acceleration using Intelligent Processing Units," Papers 2105.10430, arXiv.org, revised Aug 2021.
- Antonio Briola & Jeremy Turiel & Riccardo Marcaccioli & Alvaro Cauderan & Tomaso Aste, 2021. "Deep Reinforcement Learning for Active High Frequency Trading," Papers 2101.07107, arXiv.org, revised Aug 2023.
- Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
- Yufei Wu & Mahmoud Mahfouz & Daniele Magazzeni & Manuela Veloso, 2021. "Towards Robust Representation of Limit Orders Books for Deep Learning Models," Papers 2110.05479, arXiv.org, revised Dec 2022.
- Zihao Zhang & Stefan Zohren & Stephen Roberts, 2019. "Deep Reinforcement Learning for Trading," Papers 1911.10107, arXiv.org.
- Mostafa Shabani & Martin Magris & George Tzagkarakis & Juho Kanniainen & Alexandros Iosifidis, 2022. "Predicting the State of Synchronization of Financial Time Series using Cross Recurrence Plots," Papers 2210.14605, arXiv.org, revised Nov 2022.
- Zijian Shi & John Cartlidge, 2021. "The Limit Order Book Recreation Model (LOBRM): An Extended Analysis," Papers 2107.00534, arXiv.org.
- Antonio Briola & Jeremy Turiel & Tomaso Aste, 2020. "Deep Learning modeling of Limit Order Book: a comparative perspective," Papers 2007.07319, arXiv.org, revised Oct 2020.
- Eghbal Rahimikia & Stefan Zohren & Ser-Huang Poon, 2021. "Realised Volatility Forecasting: Machine Learning via Financial Word Embedding," Papers 2108.00480, arXiv.org, revised Nov 2024.
- Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
- Yufei Wu & Mahmoud Mahfouz & Daniele Magazzeni & Manuela Veloso, 2021. "How Robust are Limit Order Book Representations under Data Perturbation?," Papers 2110.04752, arXiv.org.
- Lorenzo Lucchese & Mikko Pakkanen & Almut Veraart, 2022. "The Short-Term Predictability of Returns in Order Book Markets: a Deep Learning Perspective," Papers 2211.13777, arXiv.org, revised Oct 2023.
- Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
- Matteo Prata & Giuseppe Masi & Leonardo Berti & Viviana Arrigoni & Andrea Coletta & Irene Cannistraci & Svitlana Vyetrenko & Paola Velardi & Novella Bartolini, 2023. "LOB-Based Deep Learning Models for Stock Price Trend Prediction: A Benchmark Study," Papers 2308.01915, arXiv.org, revised Sep 2023.
- Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023.
"Forecasting mid-price movement of Bitcoin futures using machine learning,"
Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
- Akyildirim, Erdinc & Cepni, Oguzhan & Corbet, Shaen & Uddin, Gazi Salah, 2020. "Forecasting Mid-price Movement of Bitcoin Futures Using Machine Learning," Working Papers 20-2020, Copenhagen Business School, Department of Economics.
- Zijian Shi & Yu Chen & John Cartlidge, 2021. "The LOB Recreation Model: Predicting the Limit Order Book from TAQ History Using an Ordinary Differential Equation Recurrent Neural Network," Papers 2103.01670, arXiv.org.
- Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.
- Yuanrong Wang & Tomaso Aste, 2022. "Sparsification and Filtering for Spatial-temporal GNN in Multivariate Time-series," Papers 2203.03991, arXiv.org.
- M. Shabani & M. Magris & George Tzagkarakis & J. Kanniainen & A. Iosifidis, 2023. "Predicting the state of synchronization of financial time series using cross recurrence plots," Post-Print hal-04415269, HAL.
- Darima Fotheringham & Michael A. Wiles, 2023. "The effect of implementing chatbot customer service on stock returns: an event study analysis," Journal of the Academy of Marketing Science, Springer, vol. 51(4), pages 802-822, July.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-02-22 (Big Data)
- NEP-CMP-2021-02-22 (Computational Economics)
- NEP-CWA-2021-02-22 (Central and Western Asia)
- NEP-FMK-2021-02-22 (Financial Markets)
- NEP-FOR-2021-02-22 (Forecasting)
- NEP-MST-2021-02-22 (Market Microstructure)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.08811. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.