IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.02277.html
   My bibliography  Save this paper

Attention-Based Reading, Highlighting, and Forecasting of the Limit Order Book

Author

Listed:
  • Jiwon Jung
  • Kiseop Lee

Abstract

Managing high-frequency data in a limit order book (LOB) is a complex task that often exceeds the capabilities of conventional time-series forecasting models. Accurately predicting the entire multi-level LOB, beyond just the mid-price, is essential for understanding high-frequency market dynamics. However, this task is challenging due to the complex interdependencies among compound attributes within each dimension, such as order types, features, and levels. In this study, we explore advanced multidimensional sequence-to-sequence models to forecast the entire multi-level LOB, including order prices and volumes. Our main contribution is the development of a compound multivariate embedding method designed to capture the complex relationships between spatiotemporal features. Empirical results show that our method outperforms other multivariate forecasting methods, achieving the lowest forecasting error while preserving the ordinal structure of the LOB.

Suggested Citation

  • Jiwon Jung & Kiseop Lee, 2024. "Attention-Based Reading, Highlighting, and Forecasting of the Limit Order Book," Papers 2409.02277, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2409.02277
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.02277
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alec N. Kercheval & Yuan Zhang, 2015. "Modelling high-frequency limit order book dynamics with support vector machines," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1315-1329, August.
    2. Justin A. Sirignano, 2019. "Deep learning for limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 549-570, April.
    3. Álvaro Arroyo & Álvaro Cartea & Fernando Moreno-Pino & Stefan Zohren, 2024. "Deep attentive survival analysis in limit order books: estimating fill probabilities with convolutional-transformers," Quantitative Finance, Taylor & Francis Journals, vol. 24(1), pages 35-57, January.
    4. Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Benchmark dataset for mid‐price forecasting of limit order book data with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 852-866, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Magris & Mostafa Shabani & Alexandros Iosifidis, 2022. "Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics in Limit-Order Book Markets," Papers 2203.03613, arXiv.org, revised Jan 2023.
    2. Yufei Wu & Mahmoud Mahfouz & Daniele Magazzeni & Manuela Veloso, 2021. "Towards Robust Representation of Limit Orders Books for Deep Learning Models," Papers 2110.05479, arXiv.org, revised Dec 2022.
    3. Adamantios Ntakaris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2020. "Mid-price prediction based on machine learning methods with technical and quantitative indicators," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-39, June.
    4. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
    5. Ye, Wuyi & Yang, Jinting & Chen, Pengzhan, 2024. "Short-term stock price trend prediction with imaging high frequency limit order book data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1189-1205.
    6. Adamantios Ntakaris & Giorgio Mirone & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Feature Engineering for Mid-Price Prediction with Deep Learning," Papers 1904.05384, arXiv.org, revised Jun 2019.
    7. Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
    8. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "Deep Limit Order Book Forecasting," Papers 2403.09267, arXiv.org, revised Jun 2024.
    9. Ymir Makinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Forecasting of Jump Arrivals in Stock Prices: New Attention-based Network Architecture using Limit Order Book Data," Papers 1810.10845, arXiv.org.
    10. James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
    11. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    12. Xianfeng Jiao & Zizhong Li & Chang Xu & Yang Liu & Weiqing Liu & Jiang Bian, 2023. "Microstructure-Empowered Stock Factor Extraction and Utilization," Papers 2308.08135, arXiv.org.
    13. Luca Lalor & Anatoliy Swishchuk, 2024. "Market Simulation under Adverse Selection," Papers 2409.12721, arXiv.org.
    14. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "HLOB -- Information Persistence and Structure in Limit Order Books," Papers 2405.18938, arXiv.org, revised Jun 2024.
    15. Andrea Coletta & Joseph Jerome & Rahul Savani & Svitlana Vyetrenko, 2023. "Conditional Generators for Limit Order Book Environments: Explainability, Challenges, and Robustness," Papers 2306.12806, arXiv.org.
    16. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
    17. Dorota Toczydlowska & Gareth W. Peters, 2018. "Financial Big Data Solutions for State Space Panel Regression in Interest Rate Dynamics," Econometrics, MDPI, vol. 6(3), pages 1-45, July.
    18. Yufei Wu & Mahmoud Mahfouz & Daniele Magazzeni & Manuela Veloso, 2021. "How Robust are Limit Order Book Representations under Data Perturbation?," Papers 2110.04752, arXiv.org.
    19. Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine Learning Methods," Papers 1705.03233, arXiv.org, revised Mar 2020.
    20. Schnaubelt, Matthias, 2022. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," European Journal of Operational Research, Elsevier, vol. 296(3), pages 993-1006.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.02277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.