Cross-Impact of Order Flow Imbalance in Equity Markets
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hee‐Joon Ahn & Kee‐Hong Bae & Kalok Chan, 2001. "Limit Orders, Depth, and Volatility: Evidence from the Stock Exchange of Hong Kong," Journal of Finance, American Finance Association, vol. 56(2), pages 767-788, April.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017.
"Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500,"
European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2016. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," FAU Discussion Papers in Economics 03/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
- Kewei Hou, 2007. "Industry Information Diffusion and the Lead-lag Effect in Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1113-1138.
- Shanshan Wang & Rudi Schäfer & Thomas Guhr, 2016. "Cross-response in correlated financial markets: individual stocks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(4), pages 1-16, April.
- Alex Chinco & Adam D. Clark‐Joseph & Mao Ye, 2019. "Sparse Signals in the Cross‐Section of Returns," Journal of Finance, American Finance Association, vol. 74(1), pages 449-492, February.
- Pierre Giot, 2005.
"Market risk models for intraday data,"
The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 309-324.
- GIOT, Pierre, 2005. "Market risk models for intraday data," LIDAM Reprints CORE 1850, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- A. Abhyankar & D. Ghosh & E. Levin & R.J. Limmack, 1997.
"Bid‐ask Spreads, Trading Volume and Volatility: Intra‐day Evidence from the London Stock Exchange,"
Journal of Business Finance & Accounting,
Wiley Blackwell, vol. 24(3), pages 343-362, April.
- A. Abhyankar & D. Ghosh & E. Levin & R.J. Limmack, 1997. "Bid-ask Spreads, Trading Volume and Volatility: Intra-day Evidence from the London Stock Exchange," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 24(3), pages 343-362.
- A Abhyankar & D Ghosh & E Levin & R J Limmack, 1995. "Bid-Ask Spreads, Trading Volume and Volatility: Intraday Evidence from the London Stock Exchange," Working Papers Series 95/11, University of Stirling, Division of Economics.
- Harris, Lawrence E. & Panchapagesan, Venkatesh, 2005. "The information content of the limit order book: evidence from NYSE specialist trading decisions," Journal of Financial Markets, Elsevier, vol. 8(1), pages 25-67, February.
- Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2015.
"Emergence of statistically validated financial intraday lead-lag relationships,"
Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1375-1386, August.
- Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2014. "Emergence of statistically validated financial intraday lead-lag relationships," Papers 1401.0462, arXiv.org.
- Paolo Pasquariello & Clara Vega, 2015. "Strategic Cross-Trading in the U.S. Stock Market," Review of Finance, European Finance Association, vol. 19(1), pages 229-282.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Charles Cao & Oliver Hansch & Xiaoxin Wang, 2009. "The information content of an open limit‐order book," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(1), pages 16-41, January.
- Fabrizio Lillo & J. Doyne Farmer & Rosario N. Mantegna, 2003. "Master curve for price-impact function," Nature, Nature, vol. 421(6919), pages 129-130, January.
- Zoltán Eisler & Jean-Philippe Bouchaud & Julien Kockelkoren, 2012. "The price impact of order book events: market orders, limit orders and cancellations," Quantitative Finance, Taylor & Francis Journals, vol. 12(9), pages 1395-1419, September.
- Madhavan, Ananth & Richardson, Matthew & Roomans, Mark, 1997.
"Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks,"
The Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 1035-1064.
- Ananth Madhavan & Matthew Richardson & Mark Roomans, "undated". "Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks," Rodney L. White Center for Financial Research Working Papers 20-94, Wharton School Rodney L. White Center for Financial Research.
- Ananth Madhavan & Matthew Richardson & Mark Roomans, 1996. "Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks," New York University, Leonard N. Stern School Finance Department Working Paper Seires 96-34, New York University, Leonard N. Stern School of Business-.
- Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
- Lior Menzly & Oguzhan Ozbas, 2010. "Market Segmentation and Cross‐predictability of Returns," Journal of Finance, American Finance Association, vol. 65(4), pages 1555-1580, August.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Shanshan Wang & Rudi Schafer & Thomas Guhr, 2016. "Cross-response in correlated financial markets: individual stocks," Papers 1603.01580, arXiv.org, revised Apr 2016.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
- Nicolas Huck, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," Post-Print hal-02143971, HAL.
- Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
- Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
- Chordia, Tarun & Subrahmanyam, Avanidhar, 2004. "Order imbalance and individual stock returns: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 72(3), pages 485-518, June.
- Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2002. "Order imbalance, liquidity, and market returns," Journal of Financial Economics, Elsevier, vol. 65(1), pages 111-130, July.
- Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
- Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
- Damian Eduardo Taranto & Giacomo Bormetti & Jean-Philippe Bouchaud & Fabrizio Lillo & Bence Tóth, 2018. "Linear models for the impact of order flow on prices. I. History dependent impact models," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 903-915, June.
- Brown, Philip & Walsh, David & Yuen, Andrea, 1997. "The interaction between order imbalance and stock price," Pacific-Basin Finance Journal, Elsevier, vol. 5(5), pages 539-557, December.
- Matthieu Wyart & Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters & Michele Vettorazzo, 2008. "Relation between bid-ask spread, impact and volatility in order-driven markets," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 41-57.
- Shanshan Wang & Rudi Schäfer & Thomas Guhr, 2016. "Average cross-responses in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(9), pages 1-13, September.
- Laurent Laloux & Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Random Matrix Theory And Financial Correlations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 391-397.
- Hasbrouck, Joel & Seppi, Duane J., 2001. "Common factors in prices, order flows, and liquidity," Journal of Financial Economics, Elsevier, vol. 59(3), pages 383-411, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Daniel Cunha Oliveira & Yutong Lu & Xi Lin & Mihai Cucuringu & Andre Fujita, 2024. "Causality-Inspired Models for Financial Time Series Forecasting," Papers 2408.09960, arXiv.org.
- Deborah Miori & Mihai Cucuringu, 2022. "SEC Form 13F-HR: Statistical investigation of trading imbalances and profitability analysis," Papers 2209.08825, arXiv.org.
- Eduardo Abi Jaber & Eyal Neuman & Sturmius Tuschmann, 2024. "Optimal Portfolio Choice with Cross-Impact Propagators," Papers 2403.10273, arXiv.org.
- Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "HLOB -- Information Persistence and Structure in Limit Order Books," Papers 2405.18938, arXiv.org, revised Jun 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
- Han, Chulwoo & He, Zhaodong & Toh, Alenson Jun Wei, 2023. "Pairs trading via unsupervised learning," European Journal of Operational Research, Elsevier, vol. 307(2), pages 929-947.
- Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
- Rubesam, Alexandre, 2022.
"Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market,"
Emerging Markets Review, Elsevier, vol. 51(PB).
- Alexandre Rubesam, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Post-Print hal-03707365, HAL.
- Ghadhab, Imen, 2018. "Arbitrage opportunities and liquidity: An intraday event study on cross-listed stocks," Journal of Multinational Financial Management, Elsevier, vol. 46(C), pages 1-10.
- Chaeshick Chung & Sukjin Park, 2021. "Deep Learning Market Microstructure: Dual-Stage Attention-Based Recurrent Neural Networks," Working Papers 2108, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
- Fabrizio Lillo, 2021. "Order flow and price formation," Papers 2105.00521, arXiv.org.
- Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
- Mazza, Paolo, 2015.
"Price dynamics and market liquidity: An intraday event study on Euronext,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 56(C), pages 139-153.
- Paolo Mazza, 2015. "Price dynamics and market liquidity: An intraday event study on Euronext," Post-Print hal-01563014, HAL.
- O’Sullivan, Conall & Papavassiliou, Vassilios G. & Wafula, Ronald Wekesa & Boubaker, Sabri, 2024.
"New insights into liquidity resiliency,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
- Conall O'Sullivan & Vassilios G. Papavassiliou & Ronald Wekesa Wafula & Sabri Boubaker, 2024. "New Insights into Liquidity Resiliency," Post-Print hal-04432411, HAL.
- L. C. Garcia Del Molino & I. Mastromatteo & Michael Benzaquen & J.-P. Bouchaud, 2019. "The Multivariate Kyle model: More is different," Working Papers hal-02323433, HAL.
- Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2008. "Liquidity and market efficiency," Journal of Financial Economics, Elsevier, vol. 87(2), pages 249-268, February.
- Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
- Erdinc Akyildirim & Ahmet Goncu & Alper Hekimoglu & Duc Khuong Nguyen & Ahmet Sensoy, 2023.
"Statistical arbitrage: factor investing approach,"
OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(4), pages 1295-1331, December.
- Akyildirim, Erdinc & Goncu, Ahmet & Hekimoglu, Alper & Nguyen, Duc Khuong & Sensoy, Ahmet, 2021. "Statistical arbitrage: Factor investing approach," MPRA Paper 105766, University Library of Munich, Germany.
- Erdinc Akyildirim & Ahmet Goncu & Alper Hekimoglu & Duc Khuong Nguyen & Ahmet Sensoy, 2021. "Statistical Arbitrage: Factor Investing Approach," Working Papers 2021-003, Department of Research, Ipag Business School.
- Lee, Jaeram & Ryu, Doojin & Yang, Heejin, 2021. "Does vega-neutral options trading contain information?," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 294-314.
- Ivan Jericevich & Patrick Chang & Tim Gebbie, 2020. "Comparing the market microstructure between two South African exchanges," Papers 2011.04367, arXiv.org.
- Luis Carlos Garc'ia del Molino & Iacopo Mastromatteo & Michael Benzaquen & Jean-Philippe Bouchaud, 2018. "The Multivariate Kyle model: More is different," Papers 1806.07791, arXiv.org, revised Dec 2018.
- Raymond C. W. Leung & Yu-Man Tam, 2021. "Statistical Arbitrage Risk Premium by Machine Learning," Papers 2103.09987, arXiv.org.
- Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
- Mathieu Rosenbaum & Mehdi Tomas, 2021. "A characterisation of cross-impact kernels," Papers 2107.08684, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-MST-2022-01-17 (Market Microstructure)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.13213. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.