IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v33y2023i4p1044-1081.html
   My bibliography  Save this article

Deep order flow imbalance: Extracting alpha at multiple horizons from the limit order book

Author

Listed:
  • Petter N. Kolm
  • Jeremy Turiel
  • Nicholas Westray

Abstract

We employ deep learning in forecasting high‐frequency returns at multiple horizons for 115 stocks traded on Nasdaq using order book information at the most granular level. While raw order book states can be used as input to the forecasting models, we achieve state‐of‐the‐art predictive accuracy by training simpler “off‐the‐shelf” artificial neural networks on stationary inputs derived from the order book. Specifically, models trained on order flow significantly outperform most models trained directly on order books. Using cross‐sectional regressions, we link the forecasting performance of a long short‐term memory network to stock characteristics at the market microstructure level, suggesting that “information‐rich” stocks can be predicted more accurately. Finally, we demonstrate that the effective horizon of stock specific forecasts is approximately two average price changes.

Suggested Citation

  • Petter N. Kolm & Jeremy Turiel & Nicholas Westray, 2023. "Deep order flow imbalance: Extracting alpha at multiple horizons from the limit order book," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1044-1081, October.
  • Handle: RePEc:bla:mathfi:v:33:y:2023:i:4:p:1044-1081
    DOI: 10.1111/mafi.12413
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12413
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. Huang, Roger D & Stoll, Hans R, 1994. "Market Microstructure and Stock Return Predictions," The Review of Financial Studies, Society for Financial Studies, vol. 7(1), pages 179-213.
    3. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2019. "Extending Deep Learning Models for Limit Order Books to Quantile Regression," Papers 1906.04404, arXiv.org.
    4. B. Tóth & Z. Eisler & F. Lillo & J. Kockelkoren & J.-P. Bouchaud & J.D. Farmer, 2012. "How does the market react to your order flow?," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1015-1024, May.
    5. Hasbrouck, Joel, 1988. "Trades, quotes, inventories, and information," Journal of Financial Economics, Elsevier, vol. 22(2), pages 229-252, December.
    6. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "BDLOB: Bayesian Deep Convolutional Neural Networks for Limit Order Books," Papers 1811.10041, arXiv.org.
    7. Zihao Zhang & Stefan Zohren, 2021. "Multi-Horizon Forecasting for Limit Order Books: Novel Deep Learning Approaches and Hardware Acceleration using Intelligent Processing Units," Papers 2105.10430, arXiv.org, revised Aug 2021.
    8. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    9. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    10. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    11. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    12. Zihao Zhang & Bryan Lim & Stefan Zohren, 2021. "Deep Learning for Market by Order Data," Papers 2102.08811, arXiv.org, revised Jul 2021.
    13. Justin A. Sirignano, 2019. "Deep learning for limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 549-570, April.
    14. Ymir Mäkinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Forecasting jump arrivals in stock prices: new attention-based network architecture using limit order book data," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 2033-2050, December.
    15. Luca Philippe Mertens & Alberto Ciacci & Fabrizio Lillo & Giulia Livieri, 2022. "Liquidity fluctuations and the latent dynamics of price impact," Quantitative Finance, Taylor & Francis Journals, vol. 22(1), pages 149-169, January.
    16. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    17. Chordia, Tarun & Subrahmanyam, Avanidhar, 2004. "Order imbalance and individual stock returns: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 72(3), pages 485-518, June.
    18. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2002. "Order imbalance, liquidity, and market returns," Journal of Financial Economics, Elsevier, vol. 65(1), pages 111-130, July.
    19. Easley, David & O'Hara, Maureen, 1987. "Price, trade size, and information in securities markets," Journal of Financial Economics, Elsevier, vol. 19(1), pages 69-90, September.
    20. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    21. Anastasia Bugaenko, 2020. "Empirical Study of Market Impact Conditional on Order-Flow Imbalance," Papers 2004.08290, arXiv.org, revised Apr 2020.
    22. Zoltán Eisler & Jean-Philippe Bouchaud & Julien Kockelkoren, 2012. "The price impact of order book events: market orders, limit orders and cancellations," Quantitative Finance, Taylor & Francis Journals, vol. 12(9), pages 1395-1419, September.
    23. Amihud, Yakov & Mendelson, Haim, 1980. "Dealership market : Market-making with inventory," Journal of Financial Economics, Elsevier, vol. 8(1), pages 31-53, March.
    24. Ron Kaniel & Hong Liu, 2006. "So What Orders Do Informed Traders Use?," The Journal of Business, University of Chicago Press, vol. 79(4), pages 1867-1914, July.
    25. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2019. "Price Discovery without Trading: Evidence from Limit Orders," Journal of Finance, American Finance Association, vol. 74(4), pages 1621-1658, August.
    26. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    27. Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Benchmark dataset for mid‐price forecasting of limit order book data with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 852-866, December.
    28. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    29. Zihao Zhang & Bryan Lim & Stefan Zohren, 2021. "Deep Learning for Market by Order Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 28(1), pages 79-95, January.
    30. Garman, Mark B., 1976. "Market microstructure," Journal of Financial Economics, Elsevier, vol. 3(3), pages 257-275, June.
    31. Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Briola, Antonio & Bartolucci, Silvia & Aste, Tomaso, 2025. "HLOB–Information persistence and structure in limit order books," LSE Research Online Documents on Economics 126623, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubofsky, David, 1997. "Limit orders and ex-dividend day return distributions," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 47-65, January.
    2. Biais, Bruno & Glosten, Larry & Spatt, Chester, 2005. "Market microstructure: A survey of microfoundations, empirical results, and policy implications," Journal of Financial Markets, Elsevier, vol. 8(2), pages 217-264, May.
    3. Corò, Filippo & Dufour, Alfonso & Varotto, Simone, 2013. "Credit and liquidity components of corporate CDS spreads," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5511-5525.
    4. Mazza, Paolo, 2015. "Price dynamics and market liquidity: An intraday event study on Euronext," The Quarterly Review of Economics and Finance, Elsevier, vol. 56(C), pages 139-153.
    5. Jagjeev Dosanjh, 2017. "Exchange Initiatives and Market Efficiency: Evidence from the Australian Securities Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2017, January-A.
    6. repec:uts:finphd:34 is not listed on IDEAS
    7. Jun (Tony) Ruan & Tongshu Ma, 2017. "Bid-Ask Spread, Quoted Depths, and Unexpected Duration Between Trades," Journal of Financial Services Research, Springer;Western Finance Association, vol. 51(3), pages 385-436, June.
    8. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    9. Lyons, Richard K., 1995. "Tests of microstructural hypotheses in the foreign exchange market," Journal of Financial Economics, Elsevier, vol. 39(2-3), pages 321-351.
    10. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    11. Lilian de Menezes & Marianna Russo & Giovanni Urga, 2016. "Identifying Drivers of Liquidity in the NBP Month-ahead Market," EcoMod2016 9570, EcoMod.
    12. Medina, Vicente & Pardo, Ángel & Pascual, Roberto, 2014. "The timeline of trading frictions in the European carbon market," Energy Economics, Elsevier, vol. 42(C), pages 378-394.
    13. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    14. Menkhoff, Lukas & Schmeling, Maik, 2010. "Whose trades convey information? Evidence from a cross-section of traders," Journal of Financial Markets, Elsevier, vol. 13(1), pages 101-128, February.
    15. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
    16. Henk Berkman & Carole Comerton‐Forde, 2011. "Market microstructure: A review from down under," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 51(1), pages 50-78, March.
    17. Zihao Zhang & Stefan Zohren, 2021. "Multi-Horizon Forecasting for Limit Order Books: Novel Deep Learning Approaches and Hardware Acceleration using Intelligent Processing Units," Papers 2105.10430, arXiv.org, revised Aug 2021.
    18. deB. Harris, Frederick H. & McInish, Thomas H. & Chakravarty, Ranjan R., 1995. "Bids and asks in disequilibrium market microstructure: The case of IBM," Journal of Banking & Finance, Elsevier, vol. 19(2), pages 323-345, May.
    19. Damian Eduardo Taranto & Giacomo Bormetti & Jean-Philippe Bouchaud & Fabrizio Lillo & Bence Toth, 2016. "Linear models for the impact of order flow on prices I. Propagators: Transient vs. History Dependent Impact," Papers 1602.02735, arXiv.org.
    20. Iraklis Kollias & John Leventides & Vassilios G. Papavassiliou, 2024. "On the solution of games with arbitrary payoffs: An application to an over‐the‐counter financial market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1877-1895, April.
    21. Pascual, Roberto, 1999. "How does liquidity behave? A multidimensional analysis of NYSE stocks," DEE - Working Papers. Business Economics. WB 6433, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:33:y:2023:i:4:p:1044-1081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.