IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v424y2015icp225-241.html
   My bibliography  Save this article

The Chinese Correction of February 2007: How financial hierarchies change in a market crash

Author

Listed:
  • Teh, Boon Kin
  • Goo, Yik Wen
  • Lian, Tong Wei
  • Ong, Wei Guang
  • Choi, Wen Ting
  • Damodaran, Mridula
  • Cheong, Siew Ann

Abstract

We analyzed 546 stocks in the Singapore Stock Exchange (SGX) and 1173 stocks in the Hong Kong Stock Exchange (HKSE) in 2006 and 2007, to understand how financial hierarchies on these two markets change over market corrections and crashes. To do so, we introduced the digital cross correlation as a measure of the comovement tendencies between stock pairs, and also the method of partial hierarchical clustering to iteratively identify strongly-correlated clusters of stocks. From daily prices over the 2006–2007 period, we found the existence of clusters of local stocks as well as clusters of Chinese stocks traded on the two markets. We further discovered the Chinese clusters organizing into a Chinese supercluster, interacting less strongly with a supercluster dominated by local clusters. Going down to 30-minute prices within two-month overlapping time windows over 2006 and 2007, we found dips in the number of clusters before market corrections and crashes, followed by peaks in the number of clusters afterwards. On the SGX, we also found the stronger intra cluster correlation weakening, and the weaker inter cluster correlation strengthening before the February 2007 Chinese Correction. These features are in qualitative agreement with a chemical reactions picture in which clusters of stocks ‘react’ to form large superclusters of stocks that ‘dissociate’ during market crashes. Finally, on the SGX we found broad humps in the intra cluster and inter cluster correlations for the May/June 2006 market correction and the February 2007 Chinese Correction, but a sharp peak for the July 2007 Subprime Crisis. This suggests that the earlier events were endogeneous to the SGX, while the latter event was an exogeneous shock.

Suggested Citation

  • Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
  • Handle: RePEc:eee:phsmap:v:424:y:2015:i:c:p:225-241
    DOI: 10.1016/j.physa.2015.01.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115000266
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.01.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    2. Dong-Hee Kim & Hawoong Jeong, 2005. "Systematic analysis of group identification in stock markets," Papers physics/0503076, arXiv.org, revised Oct 2005.
    3. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    4. Jung, Woo-Sung & Kwon, Okyu & Wang, Fengzhong & Kaizoji, Taisei & Moon, Hie-Tae & Stanley, H. Eugene, 2008. "Group dynamics of the Japanese market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 537-542.
    5. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    6. M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007. "Correlation based networks of equity returns sampled at different time horizons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
    7. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    8. Coelho, R. & Hutzler, S. & Repetowicz, P. & Richmond, P., 2007. "Sector analysis for a FTSE portfolio of stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 615-626.
    9. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    10. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    11. Sornette, Didier & Johansen, Anders, 1998. "A hierarchical model of financial crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 581-598.
    12. Onnela, J.-P. & Chakraborti, A. & Kaski, K. & Kertész, J., 2003. "Dynamic asset trees and Black Monday," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 247-252.
    13. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    14. Bekaert, Geert & Harvey, Campbell R, 1995. "Time-Varying World Market Integration," Journal of Finance, American Finance Association, vol. 50(2), pages 403-444, June.
    15. Dong-Ming Song & Michele Tumminello & Wei-Xing Zhou & Rosario N. Mantegna, 2011. "Evolution of worldwide stock markets, correlation structure and correlation based graphs," Papers 1103.5555, arXiv.org.
    16. Matteo Marsili, 2002. "Dissecting financial markets: Sectors and states," Papers cond-mat/0207156, arXiv.org.
    17. Matteo Marsili, 2002. "Dissecting financial markets: sectors and states," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 297-302.
    18. Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
    19. T. Di Matteo & F. Pozzi & T. Aste, 2010. "The use of dynamical networks to detect the hierarchical organization of financial market sectors," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(1), pages 3-11, January.
    20. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    21. Boginski, Vladimir & Butenko, Sergiy & Pardalos, Panos M., 2005. "Statistical analysis of financial networks," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 431-443, February.
    22. Mizuno, Takayuki & Takayasu, Hideki & Takayasu, Misako, 2006. "Correlation networks among currencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 336-342.
    23. Ferson, Wayne E & Harvey, Campbell R, 1993. "The Risk and Predictability of International Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 527-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Viviane Senna & Adriano Mendonça Souza, 2023. "Impacts of short and long-term between cryptocurrencies and stock exchange indexes," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 97-119, February.
    3. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2020. "Fluctuation and volatility dynamics of stochastic interacting energy futures price model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. Huang, Wei-Qiang & Yao, Shuang & Zhuang, Xin-Tian & Yuan, Ying, 2017. "Dynamic asset trees in the US stock market: Structure variation and market phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 44-53.
    5. Zhang, Yali & Wang, Jun, 2017. "Nonlinear complexity of random visibility graph and Lempel-Ziv on multitype range-intensity interacting financial dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 741-756.
    6. Boon Kin Teh & Siew Ann Cheong, 2016. "The Asian Correction Can Be Quantitatively Forecasted Using a Statistical Model of Fusion-Fission Processes," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-13, October.
    7. Su, Qingqing & Tu, Lilan & Wang, Xianjia & Rong, Hang, 2022. "Construction and robustness of directed-weighted financial stock networks via meso-scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    8. Hu, Fei & Zhao, Shangmei & Bing, Tao & Chang, Yiming, 2017. "Hierarchy in industrial structure: The cases of China and the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 871-882.
    9. Nie, Chun-Xiao & Song, Fu-Tie, 2023. "Stable versus fragile community structures in the correlation dynamics of Chinese industry indices," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    3. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    4. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    5. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    6. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    7. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    8. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    9. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
    10. Biplab Bhattacharjee & Muhammad Shafi & Animesh Acharjee, 2017. "Investigating the Evolution of Linkage Dynamics among Equity Markets Using Network Models and Measures: The Case of Asian Equity Market Integration," Data, MDPI, vol. 2(4), pages 1-28, December.
    11. Leonidas Sandoval Junior, 2011. "A Map of the Brazilian Stock Market," Papers 1107.4146, arXiv.org, revised Mar 2013.
    12. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    13. Grigory Bautin & Valery Kalyagin & Alexander Koldanov & Petr Koldanov & Panos Pardalos, 2013. "Simple measure of similarity for the market graph construction," Computational Management Science, Springer, vol. 10(2), pages 105-124, June.
    14. Tristan Millington & Mahesan Niranjan, 2020. "Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation," Papers 2005.03963, arXiv.org, revised Nov 2020.
    15. Huang, Wei-Qiang & Yao, Shuang & Zhuang, Xin-Tian & Yuan, Ying, 2017. "Dynamic asset trees in the US stock market: Structure variation and market phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 44-53.
    16. Andrea Di Iura, 2022. "Comparison of empirical and shrinkage correlation algorithm for clustering methods in the futures market," SN Business & Economics, Springer, vol. 2(8), pages 1-17, August.
    17. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.
    18. Irena Vodenska & Alexander P. Becker & Di Zhou & Dror Y. Kenett & H. Eugene Stanley & Shlomo Havlin, 2016. "Community Analysis of Global Financial Markets," Risks, MDPI, vol. 4(2), pages 1-15, May.
    19. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    20. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:424:y:2015:i:c:p:225-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.