IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.08382.html
   My bibliography  Save this paper

Hybrid Vector Auto Regression and Neural Network Model for Order Flow Imbalance Prediction in High Frequency Trading

Author

Listed:
  • Abdul Rahman
  • Neelesh Upadhye

Abstract

In high frequency trading, accurate prediction of Order Flow Imbalance (OFI) is crucial for understanding market dynamics and maintaining liquidity. This paper introduces a hybrid predictive model that combines Vector Auto Regression (VAR) with a simple feedforward neural network (FNN) to forecast OFI and assess trading intensity. The VAR component captures linear dependencies, while residuals are fed into the FNN to model non-linear patterns, enabling a comprehensive approach to OFI prediction. Additionally, the model calculates the intensity on the Buy or Sell side, providing insights into which side holds greater trading pressure. These insights facilitate the development of trading strategies by identifying periods of high buy or sell intensity. Using both synthetic and real trading data from Binance, we demonstrate that the hybrid model offers significant improvements in predictive accuracy and enhances strategic decision-making based on OFI dynamics. Furthermore, we compare the hybrid models performance with standalone FNN and VAR models, showing that the hybrid approach achieves superior forecasting accuracy across both synthetic and real datasets, making it the most effective model for OFI prediction in high frequency trading.

Suggested Citation

  • Abdul Rahman & Neelesh Upadhye, 2024. "Hybrid Vector Auto Regression and Neural Network Model for Order Flow Imbalance Prediction in High Frequency Trading," Papers 2411.08382, arXiv.org.
  • Handle: RePEc:arx:papers:2411.08382
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.08382
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan, Kalok & Fong, Wai-Ming, 2000. "Trade size, order imbalance, and the volatility-volume relation," Journal of Financial Economics, Elsevier, vol. 57(2), pages 247-273, August.
    2. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    3. Emmanuel Bacry & Thibault Jaisson & Jean--François Muzy, 2016. "Estimation of slowly decreasing Hawkes kernels: application to high-frequency order book dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1179-1201, August.
    4. David Easley & Marcos M. López de Prado & Maureen O'Hara, 2012. "Flow Toxicity and Liquidity in a High-frequency World," The Review of Financial Studies, Society for Financial Studies, vol. 25(5), pages 1457-1493.
    5. Yong-Chern Su & Han-Ching Huang & Shiue-Fang Lin, 2012. "Dynamic relations between order imbalance, volatility and return of top gainers," Applied Economics, Taylor & Francis Journals, vol. 44(12), pages 1509-1519, April.
    6. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    7. Finbarr Murphy & Bernard Murphy, 2012. "A vector-autoregression analysis of credit and liquidity factor dynamics in US LIBOR and Euribor swap markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 36(2), pages 351-370, April.
    8. Smales, Lee A., 2013. "Bond futures and order imbalance," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 113-132.
    9. Rama Cont & Mihai Cucuringu & Chao Zhang, 2023. "Cross-impact of order flow imbalance in equity markets," Quantitative Finance, Taylor & Francis Journals, vol. 23(10), pages 1373-1393, October.
    10. Rama Cont & Mihai Cucuringu & Chao Zhang, 2021. "Cross-Impact of Order Flow Imbalance in Equity Markets," Papers 2112.13213, arXiv.org, revised Jun 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Cunha Oliveira & Yutong Lu & Xi Lin & Mihai Cucuringu & Andre Fujita, 2024. "Causality-Inspired Models for Financial Time Series Forecasting," Papers 2408.09960, arXiv.org.
    2. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "HLOB -- Information Persistence and Structure in Limit Order Books," Papers 2405.18938, arXiv.org, revised Jun 2024.
    3. Federico Gonzalez & Mark Schervish, 2017. "Instantaneous order impact and high-frequency strategy optimization in limit order books," Papers 1707.01167, arXiv.org, revised Oct 2017.
    4. Torben G. Andersen & Oleg Bondarenko, 2015. "Assessing Measures of Order Flow Toxicity and Early Warning Signals for Market Turbulence," Review of Finance, European Finance Association, vol. 19(1), pages 1-54.
    5. Konark Jain & Nick Firoozye & Jonathan Kochems & Philip Treleaven, 2024. "Limit Order Book Simulations: A Review," Papers 2402.17359, arXiv.org, revised Mar 2024.
    6. Fabrizio Lillo, 2021. "Order flow and price formation," Papers 2105.00521, arXiv.org.
    7. Kyle Bechler & Michael Ludkovski, 2017. "Order Flows and Limit Order Book Resiliency on the Meso-Scale," Papers 1708.02715, arXiv.org.
    8. Eduardo Abi Jaber & Eyal Neuman & Sturmius Tuschmann, 2024. "Optimal Portfolio Choice with Cross-Impact Propagators," Papers 2403.10273, arXiv.org.
    9. P. B. Lerner, 2020. "Dual State-Space Model of Market Liquidity: The Chinese Experience 2009-2010," Papers 2004.06200, arXiv.org, revised May 2020.
    10. Vinodh Madhavan & Partha Ray, 2019. "Price and Volatility Linkages Between Indian Stocks and Their European GDRs," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 18(2_suppl), pages 213-237, August.
    11. Chang, Sanders S. & Wang, F. Albert, 2015. "Adverse selection and the presence of informed trading," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 19-33.
    12. Biqing Cai & Jiti Gao & Dag Tjøstheim, 2017. "A New Class of Bivariate Threshold Cointegration Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 288-305, April.
    13. Jose Asturias & Emin Dinlersoz & John Haltiwanger & Rebecca Hutchinson & Alyson Plumb, 2021. "Business Applications as a Leading Economic Indicator?," Working Papers 21-09, Center for Economic Studies, U.S. Census Bureau.
    14. Tomasz Grodzicki & Mateusz Jankiewicz, 2020. "Forecasting the Level of Unemployment, Inflation and Wages: The Case of Sweden," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 400-409.
    15. Gossé, Jean-Baptiste & Guillaumin, Cyriac, 2013. "L’apport de la représentation VAR de Christopher A. Sims à la science économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 309-319, Décembre.
    16. repec:hal:wpspec:info:hdl:2441/2525 is not listed on IDEAS
    17. Boland, John, 2015. "Spatial-temporal forecasting of solar radiation," Renewable Energy, Elsevier, vol. 75(C), pages 607-616.
    18. Yanyi Ye & Yun Wang & Xiaoguang Yang, 2022. "Bank loan information and information asymmetry in the stock market: evidence from China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-28, December.
    19. Marika Karanassou & Hector Sala, 2012. "Productivity Growth And The Phillips Curve: A Reassessment Of The Us Experience," Bulletin of Economic Research, Wiley Blackwell, vol. 64(3), pages 344-366, July.
    20. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    21. Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.08382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.