IDEAS home Printed from https://ideas.repec.org/p/bdr/borrec/377.html
   My bibliography  Save this paper

Evaluación asimétrica de una red neuronal artificial:Aplicación al caso de la inflación en Colombia

Author

Listed:
  • María Clara Aristizábal Restrepo

Abstract

El objetivo de este trabajo es explorar la relación no lineal entre el dinero y la inflación en Colombia a través de una red neuronal artificial (RNA), utilizando información mensual de la variación del IPC y del agregado monetario M3, desde enero de 1982 hasta febrero de 2005. La Constitución de 1991 le otorgo al Banco de la República la responsabilidad de velar por la estabilidad de precios. Este hecho, sumado al rezago con el que las políticas monetarias afectan a su variable objetivo, en este caso la inflación, hace indispensable para las autoridades monetarias, contar con los mejores modelos para pronosticarla y guiar sus decisiones de política. Las RNA aparecen como una excelente alternativa para lograr este propósito, dado el comportamiento intrínsecamente no lineal exhibido por la relación entre estas variables. El presente trabajo incorpora algunas innovaciones en la modelación de dinero e inflación, que permiten generar pronósticos más confiables, debido a que el modelo se aproxima con mayor exactitud a la realidad. Tales innovaciones se refieren a una selección mas sofisticada de los rezagos significativos que deben ser incorporados en el modelo, una construcción de pronósticos que actualiza su base de datos y una función de costos asimétricos para su evaluación.

Suggested Citation

  • María Clara Aristizábal Restrepo, 2006. "Evaluación asimétrica de una red neuronal artificial:Aplicación al caso de la inflación en Colombia," Borradores de Economia 377, Banco de la Republica de Colombia.
  • Handle: RePEc:bdr:borrec:377
    DOI: 10.32468/be.377
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/be.377
    Download Restriction: no

    File URL: https://libkey.io/10.32468/be.377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    2. Martha Misas Arango & Enrique López Enciso & Pablo Querubín Borrero, 2002. "La inflación en Colombia: una aproximación desde las redes neuronales," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 20(41-42), pages 143-214, June.
    3. Luis Fernando Melo & Martha Misas, 1998. "Análisis del comportamiento de la inflación trimestral en Colombia bajo cambios de régimen: Una evidencia a través del modelo "Switching" de Hamilton," Revista de Economía del Rosario, Universidad del Rosario, November.
    4. Jean Imbs & Haroon Mumtaz & Morten O. Ravn & Hélène Rey, 2003. "Nonlinearities and Real Exchange Rate Dynamics," Journal of the European Economic Association, MIT Press, vol. 1(2-3), pages 639-649, 04/05.
    5. Christoffersen, Peter F & Diebold, Francis X, 1996. "Further Results on Forecasting and Model Selection under Asymmetric Loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 561-571, Sept.-Oct.
    6. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    7. Arango, Luis E. & Melo, Luis F., 2006. "Expansions and contractions in Brazil, Colombia and Mexico: A view through nonlinear models," Journal of Development Economics, Elsevier, vol. 80(2), pages 501-517, August.
    8. Yochanan Shachmurove & Doris Witkowska, "undated". "Utilizing Artificial Neural Network Model to Predict Stock Markets," Penn CARESS Working Papers cae679cdc2e020f74d692ae73, Penn Economics Department.
    9. Martha Misas & Enrique López & Carlos Arango & Juan Nicolás Hernández, 2003. "La Demanda de Efectivo en Colombia: Una Caja Negra a la Luz de las Redes Neuronales," Borradores de Economia 268, Banco de la Republica de Colombia.
    10. Nakamura, Emi, 2005. "Inflation forecasting using a neural network," Economics Letters, Elsevier, vol. 86(3), pages 373-378, March.
    11. Steven Gonzalez, "undated". "Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models," Working Papers-Department of Finance Canada 2000-07, Department of Finance Canada.
    12. L. E. Arango & A. Gonzalez & C. E. Posada, 2002. "Returns and the interest rate: a non-linear relationship in the Bogotastock market," Applied Financial Economics, Taylor & Francis Journals, vol. 12(11), pages 835-842.
    13. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    14. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    15. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.
    16. Luis Arango & Andres Gonzalez, 2001. "Some evidence of smooth transition nonlinearity in Colombian inflation," Applied Economics, Taylor & Francis Journals, vol. 33(2), pages 155-162.
    17. Munir A. Jalil & Luis Fernando Melo, 2000. "Una Relación no Líneal entre Inflación y los Medios de Pago," Borradores de Economia 145, Banco de la Republica de Colombia.
    18. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
    19. Greg Tkacz & Sarah Hu, 1999. "Forecasting GDP Growth Using Artificial Neural Networks," Staff Working Papers 99-3, Bank of Canada.
    20. Munir A. Jalil. B & Martha Misas, 2006. "Evaluación de pronósticos del tipo de cambio utilizando," Borradores de Economia 2636, Banco de la Republica.
    21. Yochanan Shachmurove, 2002. "Applying Artificial Neural Networks to Business, Economics and Finance," Penn CARESS Working Papers 5ecbb5c20d3d547f357aa1306, Penn Economics Department.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Mauricio Salazar Sáenz, 2009. "Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia," Borradores de Economia 575, Banco de la Republica de Colombia.
    2. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    3. Luis Fernando Melo Velandia & Martha Alicia Misas Arango, 2004. "Modelos Estructurales de Inflación en Colombia: Estimación a través de Mínimos Cuadrados Flexibles," Borradores de Economia 3244, Banco de la Republica.
    4. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    5. José Luis Torres, 2006. "Modelos para la Inflación Básica de Bienes Transables y No Transables en Colombia," Borradores de Economia 3246, Banco de la Republica.
    6. Haider, Adnan & Hanif, Muhammad Nadeem, 2007. "Inflation Forecasting in Pakistan using Artificial Neural Networks," MPRA Paper 14645, University Library of Munich, Germany.
    7. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    8. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
    9. Andres, Antonio Rodriguez & Otero, Abraham & Amavilah, Voxi Heinrich, 2021. "Using Deep Learning Neural Networks to Predict the Knowledge Economy Index for Developing and Emerging Economies," MPRA Paper 109137, University Library of Munich, Germany.
    10. José Mauricio Salazar Sáenz, 2009. "Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia," Borradores de Economia 5934, Banco de la Republica.
    11. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    12. Estefania Mourelle & Juan Carlos Cuestas & Luis Alberiko Gil‐alana, 2011. "Is There An Asymmetric Behaviour In African Inflation? A Non‐Linear Approach," South African Journal of Economics, Economic Society of South Africa, vol. 79(1), pages 68-90, March.
    13. Emilio Zanetti Chini, 2018. "Forecasters’ utility and forecast coherence," CREATES Research Papers 2018-23, Department of Economics and Business Economics, Aarhus University.
    14. Héctor Mauricio Nunez Amortegui, 2005. "Una evaluación de los pronósticos de inflación en Colombia bajo el esquema de inflación objetivo," Revista de Economía del Rosario, Universidad del Rosario, December.
    15. Juan Carlos Cuestas & Estefanía Mourelle, 2009. "Inflation persistence and asymmetries: evidence for African countries," NBS Discussion Papers in Economics 2009/2, Economics, Nottingham Business School, Nottingham Trent University.
    16. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    17. Peter Christoffersen & Francis X. Diebold, 2002. "Financial Asset Returns, Market Timing, and Volatility Dynamics," CIRANO Working Papers 2002s-02, CIRANO.
    18. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    19. Krishna, Kala & Ozyildirim, Ataman & Swanson, Norman R., 2003. "Trade, investment and growth: nexus, analysis and prognosis," Journal of Development Economics, Elsevier, vol. 70(2), pages 479-499, April.
    20. Martha Misas Arango & Enrique López Enciso & Pablo Querubín Borrero, 2002. "La inflación en Colombia: una aproximación desde las redes neuronales," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 20(41-42), pages 143-214, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:borrec:377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.