IDEAS home Printed from https://ideas.repec.org/p/bdr/borrec/365.html
   My bibliography  Save this paper

Modelos Para La Inflación Básica de Bienes Transables y No Transables en Colombia

Author

Listed:
  • José Luis Torres

Abstract

En este trabajo se estiman modelos de corto plazo para pronosticar la inflación de bienes transables y no transables en Colombia. Estos modelos no existían en el Banco Central antes de 2004 y son de gran utilidad para la toma de decisiones de política monetaria. También se evalúan los beneficios, en términos de análisis y de capacidad pronóstico, de utilizar métodos que capturen la posible no linealidad de la curva de Phillips en los datos colombianos. Aunque existen diferentes razones que justifican una relación no lineal de corto plazo entre producto e inflación, cada una de ellas sugiere una forma diferente para la curva. Por esta razón, se utilizan redes neuronales artificiales (ANN) y los mínimos cuadrados flexibles (FLS), procedimientos que tienen la gran ventaja de que no imponen de antemano ninguna forma funcional que pueda sesgar los resultados. Una vez se hace la estimación de los modelos de inflación de transables y de no transables, se comparan los pronósticos de estos dos modelos no lineales con los de dos estimaciones lineales, se analizan las funciones de impulso respuesta de cada uno de los modelos y además se realiza una prueba de no linealidad. Se encuentra que la curva de Phillips en Colombia podría ser no lineal y por tanto resulta pertinente considerar modelos no lineales para su estimación. Finalmente, con estos modelos se intenta explicar el proceso de desinflación que ha vivido la economía colombiana en los últimos años tanto en la inflación de transables, como en la de no transables.

Suggested Citation

  • José Luis Torres, 2006. "Modelos Para La Inflación Básica de Bienes Transables y No Transables en Colombia," Borradores de Economia 365, Banco de la Republica de Colombia.
  • Handle: RePEc:bdr:borrec:365
    DOI: 10.32468/be.365
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/be.365
    Download Restriction: no

    File URL: https://libkey.io/10.32468/be.365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    2. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
    3. Martha Misas Arango & Enrique López Enciso & Pablo Querubín Borrero, 2002. "La inflación en Colombia: una aproximación desde las redes neuronales," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 20(41-42), pages 143-214, June.
    4. Luis Fernando Melo & Martha Misas A., 2004. "Modelos Estructurales de Inflación en Colombia: Estimación a Través de Mínimos Cuadrados Flexibles," Borradores de Economia 283, Banco de la Republica de Colombia.
    5. Peter Clark & Douglas Laxton & David Rose, 1996. "Asymmetry in the U.S. Output-Inflation Nexus," IMF Staff Papers, Palgrave Macmillan, vol. 43(1), pages 216-251, March.
    6. Javier Gómez & Juan Manuel Julio, 2000. "An Estimation of the Nonlinear Philips Curve in Colombia," Borradores de Economia 1975, Banco de la Republica.
    7. Taylor, John B, 1980. "Aggregate Dynamics and Staggered Contracts," Journal of Political Economy, University of Chicago Press, vol. 88(1), pages 1-23, February.
    8. Robert J. Gordon, 1997. "The Time-Varying NAIRU and Its Implications for Economic Policy," Journal of Economic Perspectives, American Economic Association, vol. 11(1), pages 11-32, Winter.
    9. Kalaba, Robert E. & Tesfatsion, Leigh S., 1989. "Time-Varying Linear Regression Via Flexible Least Squares," Staff General Research Papers Archive 11196, Iowa State University, Department of Economics.
    10. Eliasson, Ann-Charlotte, 2001. "Is the Short-run Phillips Curve Nonlinear? Empirical Evidence for Australia, Sweden and the United States," Working Paper Series 124, Sveriges Riksbank (Central Bank of Sweden).
    11. Enrique López E. & Martha Misas A., 1998. "Un examen empírico de la curva de Phillips en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 17(34), pages 39-87, December.
    12. Kalaba, Robert & Rasakhoo, Nima & Tesfatsion, Leigh, 1989. "A FORTRAN program for time-varying linear regression via flexible least squares," Computational Statistics & Data Analysis, Elsevier, vol. 7(3), pages 291-309, February.
    13. Martha Misas & Enrique López & Carlos Arango & Juan Nicolás Hernández, 2003. "La Demanda de Efectivo en Colombia: Una Caja Negra a la Luz de las Redes Neuronales," Borradores de Economia 268, Banco de la Republica de Colombia.
    14. Andrew J. Filardo, 1998. "New evidence on the output cost of fighting inflation," Economic Review, Federal Reserve Bank of Kansas City, vol. 83(Q III).
    15. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    16. Greg Tkacz & Sarah Hu, 1999. "Forecasting GDP Growth Using Artificial Neural Networks," Staff Working Papers 99-3, Bank of Canada.
    17. Mr. Douglas Laxton & Mr. Peter B. Clark & David Rose, 1995. "Asymmetry in the U.S. Output-Inflation Nexus: Issues and Evidence," IMF Working Papers 1995/076, International Monetary Fund.
    18. Laurence Ball & N. Gregory Mankiw & David Romer, 1988. "The New Keynsesian Economics and the Output-Inflation Trade-off," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 19(1), pages 1-82.
    19. Shapiro, Carl & Stiglitz, Joseph E, 1984. "Equilibrium Unemployment as a Worker Discipline Device," American Economic Review, American Economic Association, vol. 74(3), pages 433-444, June.
    20. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eliana Gómez & Miguel I. Gómez & Luis F.Melo & José Luis Torres, 2006. "Forecasting Food Price Inflation in Developing Countries with Inflation Targeting Regimes: the Colombian Case," Borradores de Economia 409, Banco de la Republica de Colombia.
    2. José Mauricio Salazar Sáenz, 2009. "Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia," Borradores de Economia 5934, Banco de la Republica.
    3. Gomez, Miguel I. & Gonzalez, Eliana & Melo, Luis F. & Torres, Jose L., 2006. "Forecasting Food Price Inflation, Challenges for Central Banks in Developing Countries using an Inflation Targeting Framework: the Case of Colombia," 2006 Annual meeting, July 23-26, Long Beach, CA 21181, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eliasson, Ann-Charlotte, 2001. "Is the Short-run Phillips Curve Nonlinear? Empirical Evidence for Australia, Sweden and the United States," Working Paper Series 124, Sveriges Riksbank (Central Bank of Sweden).
    2. Łukasz Arendt, 2005. "Próba oszacowania NAIRU dla Polski," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 5-6, pages 1-23.
    3. Orlando Gomes & Diana A. Mendes & Vivaldo M. Mendes & José Sousa Ramos, 2006. "Endogenous Cycles in Optimal Monetary Policywith a Nonlinear Phillips Curve," Working Papers Series 1 ercwp1508, ISCTE-IUL, Business Research Unit (BRU-IUL).
    4. Marco Gross & Willi Semmler, 2019. "Mind the Output Gap: The Disconnect of Growth and Inflation during Recessions and Convex Phillips Curves in the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(4), pages 817-848, August.
    5. Eliana González Molano & Luis Fernando Melo Velnadia & Anderson Grajales Olarte, 2007. "Pronósticos directos de la inflación colombiana," Borradores de Economia 4246, Banco de la Republica.
    6. Kumar, Anil & M. Orrenius, Pia, 2016. "A closer look at the Phillips curve using state-level data," Journal of Macroeconomics, Elsevier, vol. 47(PA), pages 84-102.
    7. Phiri, Andrew, 2015. "Examining asymmetric effects in the South African Philips curve: Evidence from logistic smooth transition regression (LSTR) models," MPRA Paper 64487, University Library of Munich, Germany.
    8. Luis Fernando Melo Velandia & Martha Alicia Misas Arango, 2004. "Modelos Estructurales de Inflación en Colombia: Estimación a través de Mínimos Cuadrados Flexibles," Borradores de Economia 3244, Banco de la Republica.
    9. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    10. Vincent Dadam & Nicola Viegi, 2021. "Estimating a New Keynesian Wage Phillips Curve," Working Papers 202107, University of Pretoria, Department of Economics.
    11. Yasufumi Gemma & Takushi Kurozumi & Mototsugu Shintani, 2023. "Trend Inflation and Evolving Inflation Dynamics:A Bayesian GMM Analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 506-520, December.
    12. Mankiw, N Gregory, 2001. "The Inexorable and Mysterious Tradeoff between Inflation and Unemployment," Economic Journal, Royal Economic Society, vol. 111(471), pages 45-61, May.
    13. Johannes Fedderke & Yang Liu, 2018. "Inflation in South Africa: An Assessment of Alternative Inflation Models," South African Journal of Economics, Economic Society of South Africa, vol. 86(2), pages 197-230, June.
    14. Marika Karanassou & Hector Sala & Dennis J. Snower, 2010. "Phillips Curves And Unemployment Dynamics: A Critique And A Holistic Perspective," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 1-51, February.
    15. Bardsen, Gunnar & Eitrheim, Oyvind & Jansen, Eilev S. & Nymoen, Ragnar, 2005. "The Econometrics of Macroeconomic Modelling," OUP Catalogue, Oxford University Press, number 9780199246502.
    16. Takushi Kurozumi & Willem Van Zandweghe, 2016. "Kinked Demand Curves, the Natural Rate Hypothesis, and Macroeconomic Stability," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 20, pages 240-257, April.
    17. Heiner Mikosch, 2012. "Sticky Prices, Competition and the Phillips Curve," KOF Working papers 12-294, KOF Swiss Economic Institute, ETH Zurich.
    18. Driscoll, John C. & Holden, Steinar, 2014. "Behavioral economics and macroeconomic models," Journal of Macroeconomics, Elsevier, vol. 41(C), pages 133-147.
    19. Annalisa Cristini & Piero Ferri, 2021. "Nonlinear models of the Phillips curve," Journal of Evolutionary Economics, Springer, vol. 31(4), pages 1129-1155, September.
    20. repec:zbw:bofism:2005_032 is not listed on IDEAS
    21. Renaud St-Cyr, 2018. "Non-linéarité de la courbe de Phillips : un survol de la littérature," Staff Analytical Notes 2018-3, Bank of Canada.

    More about this item

    Keywords

    Inflación; Curva de Phillips no Lineal; Redes Neuronales Artificiales; Mínimos Cuadrados Flexibles.;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:borrec:365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.