IDEAS home Printed from https://ideas.repec.org/p/col/000094/005934.html
   My bibliography  Save this paper

Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia

Author

Listed:
  • José Mauricio Salazar Sáenz

Abstract

Las redes neuronales artificiales han mostrado ser modelos robustos para dar cuenta del comportamiento de diferentes variables. En el presente trabajo se emplean para modelar la relación no lineal del crecimiento del PIB. Tres modelos son considerados: dos autoregresivos (especificación lineal y no lineal) y una red neuronal que usa la tasa de interés. Evaluando el desempeño de los modelos dentro y fuera de muestra, los pronósticos realizados por las redes neuronales artificiales superan ampliamente a los modelos lineales, siendo esta evidencia de relaciones asimétricas en el comportamiento del PIB en Colombia.

Suggested Citation

  • José Mauricio Salazar Sáenz, 2009. "Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia," Borradores de Economia 5934, Banco de la Republica.
  • Handle: RePEc:col:000094:005934
    as

    Download full text from publisher

    File URL: http://www.banrep.gov.co/docum/ftp/borra575.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martha Misas Arango & Enrique López Enciso & Pablo Querubín Borrero, 2002. "La Inflación en Colombia: Una Aproximación desde las Redes Neuronales," Borradores de Economia 3029, Banco de la Republica.
    2. Martha Misas Arango & Enrique López Enciso & Pablo Querubín Borrero, 2002. "La inflación en Colombia: una aproximación desde las redes neuronales," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 20(41-42), pages 143-214, June.
    3. Sims, Christopher A, 1980. "Comparison of Interwar and Postwar Business Cycles: Monetarism Reconsidered," American Economic Review, American Economic Association, vol. 70(2), pages 250-257, May.
    4. Carmen M. Reinhart. & Vicent R. Reinhart, 1991. "Fluctuaciones del producto y choques monetarios: evidencia colombiana," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 10(20), pages 53-85, December.
    5. Carmen M. Reinhart. & Vicent R. Reinhart, 1991. "Fluctuaciones del producto y choques monetarios: evidencia colombiana," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 10(20), pages 53-85, December.
    6. José Luis Torres, 2006. "Modelos Para La Inflación Básica de Bienes Transables y No Transables en Colombia," Borradores de Economia 365, Banco de la Republica de Colombia.
    7. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    8. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    9. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    10. Greg Tkacz & Sarah Hu, 1999. "Forecasting GDP Growth Using Artificial Neural Networks," Staff Working Papers 99-3, Bank of Canada.
    11. Donald P. Morgan, 1993. "Asymmetric effects of monetary policy," Economic Review, Federal Reserve Bank of Kansas City, vol. 78(Q II), pages 21-33.
    12. Munir A. Jalil. B & Martha Misas, 2006. "Evaluación de pronósticos del tipo de cambio utilizando," Borradores de Economia 2636, Banco de la Republica.
    13. Yoshihito Saito & Yoko Takeda, 2000. "Predicting the US Real GDP Growth Using Yield Spreads of Corporate Bonds," Bank of Japan Working Paper Series International Department,, Bank of Japan.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Mauricio Salazar Sáenz, 2009. "Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia," Borradores de Economia 575, Banco de la Republica de Colombia.
    2. María Clara Aristizábal Restrepo, 2006. "Evaluación asimétrica de una red neuronal artificial:Aplicación al caso de la inflación en Colombia," Borradores de Economia 377, Banco de la Republica de Colombia.
    3. José Luis Torres, 2006. "Modelos Para La Inflación Básica de Bienes Transables y No Transables en Colombia," Borradores de Economia 365, Banco de la Republica de Colombia.
    4. José Luis Torres, 2006. "Modelos Para La Inflación Básica de Bienes Transables y No Transables en Colombia," Borradores de Economia 365, Banco de la Republica de Colombia.
    5. Luis Fernando Melo Velandia & Martha Alicia Misas Arango, 2004. "Modelos Estructurales de Inflación en Colombia: Estimación a través de Mínimos Cuadrados Flexibles," Borradores de Economia 3244, Banco de la Republica.
    6. Parigi, Giuseppe & Golinelli, Roberto, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    7. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    8. Yunus Aksoy & Miguel A. Leon-Ledesma, 2004. "Interest Rates and Output in the Long Run," Money Macro and Finance (MMF) Research Group Conference 2004 92, Money Macro and Finance Research Group.
    9. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    10. Carlos Gustavo Cano, 2010. "Regla fiscal y estabilidad macroeconómica en Colombia," Borradores de Economia 607, Banco de la Republica de Colombia.
    11. Michaelides, Panayotis G. & Milios, John G. & Konstantakis, Konstantinos N. & Tarnaras, Panayiotis, 2015. "Quantity-of-money fluctuations and economic instability: empirical evidence for the USA (1958–2006)," MPRA Paper 90145, University Library of Munich, Germany.
    12. Cerqueira, Vinícius Dos Santos & Ribeiro, Márcio Bruno & Martinez, Thiago Sevilhano, 2014. "Propagação Assimétrica de Choques Monetários na Economia Brasileira: Evidências com base em um modelo vetorial não-linear de transição suave," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(1), April.
    13. Thomas Flavin & Ekaterini Panopoulou & Theologos Pantelidis, 2009. "Forecasting growth and inflation in an enlarged euro area," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 405-425.
    14. Héctor Mauricio Nunez Amortegui, 2005. "Una evaluación de los pronósticos de inflación en Colombia bajo el esquema de inflación objetivo," Revista de Economía del Rosario, Universidad del Rosario, December.
    15. Ahmet DEMIR & AtabekSHADMANOV & CumhurAYDINLI & Okan ERAY, 2015. "DESIGNING A FORECAST MODEL FOR ECONOMIC GROWTH OF JAPAN USING COMPETITIVE (HYBRID ANN VS MULTIPLE REGRESSION) MODELS Abstract : Artificial neural network models have been already used on many differen," EcoForum, "Stefan cel Mare" University of Suceava, Romania, Faculty of Economics and Public Administration - Economy, Business Administration and Tourism Department., vol. 4(2), pages 1-21, july.
    16. Cristina Fernández & Andrés González G., 2000. "Integración y vulnerabilidad externa en Colombia," Coyuntura Económica, Fedesarrollo, December.
    17. Massimiliano Marcellino, 2008. "A linear benchmark for forecasting GDP growth and inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 305-340.
    18. Jean-Marie Dufour & David Tessier, 2006. "Short-Run and Long-Run Causality between Monetary Policy Variables and Stock Prices," Staff Working Papers 06-39, Bank of Canada.
    19. Ignacio Lozano, 2009. "Budget Deficit, Money Growth and Inflation: Evidence from the Colombian case," Money Affairs, CEMLA, vol. 0(1), pages 65-95, January-J.
    20. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.

    More about this item

    Keywords

    Red neuronal artificial; no linealidad; PIB; Rolling de pronóstico; evaluación de pronóstico.;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000094:005934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angelica Bahos Olivera (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.