IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v86y2005i3p373-378.html
   My bibliography  Save this article

Inflation forecasting using a neural network

Author

Listed:
  • Nakamura, Emi

Abstract

No abstract is available for this item.

Suggested Citation

  • Nakamura, Emi, 2005. "Inflation forecasting using a neural network," Economics Letters, Elsevier, vol. 86(3), pages 373-378, March.
  • Handle: RePEc:eee:ecolet:v:86:y:2005:i:3:p:373-378
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(04)00308-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barnett, William A. & Serletis, Apostolos & Serletis, Demitre, 2015. "Nonlinear And Complex Dynamics In Economics," Macroeconomic Dynamics, Cambridge University Press, vol. 19(8), pages 1749-1779, December.
    2. Steven Gonzalez, "undated". "Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models," Working Papers-Department of Finance Canada 2000-07, Department of Finance Canada.
    3. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    4. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    5. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    6. Fernandez-Rodriguez, Fernando & Gonzalez-Martel, Christian & Sosvilla-Rivero, Simon, 2000. "On the profitability of technical trading rules based on artificial neural networks:: Evidence from the Madrid stock market," Economics Letters, Elsevier, vol. 69(1), pages 89-94, October.
    7. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    8. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haider, Adnan & Hanif, Muhammad Nadeem, 2007. "Inflation Forecasting in Pakistan using Artificial Neural Networks," MPRA Paper 14645, University Library of Munich, Germany.
    2. M. Ali Choudhary & Adnan Haider, 2012. "Neural network models for inflation forecasting: an appraisal," Applied Economics, Taylor & Francis Journals, vol. 44(20), pages 2631-2635, July.
    3. Gomes, Orlando, 2013. "Information stickiness on general equilibrium and endogenous cycles," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 7, pages 1-43.
    4. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    5. Chiarella, Carl & He, Xue-Zhong & Hommes, Cars, 2006. "A dynamic analysis of moving average rules," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1729-1753.
    6. Gomes, Orlando, 2009. "Stability under learning: The endogenous growth problem," Economic Modelling, Elsevier, vol. 26(5), pages 807-816, September.
    7. Orlando Gomes, 2006. "Routes to chaos in macroeconomic theory," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 33(6), pages 437-468, November.
    8. Orlando Gomes, 2007. "Routes to chaos in macroeconomic theory," Journal of Economic Studies, Emerald Group Publishing, vol. 33(6), pages 437-468, January.
    9. Bekiros, Stelios D., 2015. "Heuristic learning in intraday trading under uncertainty," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 34-49.
    10. Orlando Gomes, 2006. "Routes to chaos in macroeconomic theory," Journal of Economic Studies, Emerald Group Publishing, vol. 33(6), pages 437-468, November.
    11. Paul De Grauwe, 2014. "Animal Spirits and Monetary Policy," World Scientific Book Chapters, in: Exchange Rates and Global Financial Policies, chapter 18, pages 473-520, World Scientific Publishing Co. Pte. Ltd..
    12. da Silveira, Jaylson Jair & Lima, Gilberto Tadeu, 2021. "Wage inequality as a source of endogenous macroeconomic fluctuations," Structural Change and Economic Dynamics, Elsevier, vol. 56(C), pages 35-52.
    13. repec:zbw:bofrdp:2007_032 is not listed on IDEAS
    14. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    15. Steven N. Durlauf, 1996. "Statistical Mechanics Approaches to Socioeconomic Behavior," NBER Technical Working Papers 0203, National Bureau of Economic Research, Inc.
    16. Chiarella, Carl & Dieci, Roberto & He, Xue-Zhong, 2007. "Heterogeneous expectations and speculative behavior in a dynamic multi-asset framework," Journal of Economic Behavior & Organization, Elsevier, vol. 62(3), pages 408-427, March.
    17. Bohm, Volker & Wenzelburger, Jan, 2005. "On the performance of efficient portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 721-740, April.
    18. Scheffknecht, Lukas & Geiger, Felix, 2011. "A behavioral macroeconomic model with endogenous boom-bust cycles and leverage dynamcis," FZID Discussion Papers 37-2011, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    19. Hommes, Cars & Huang, Hai & Wang, Duo, 2005. "A robust rational route to randomness in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 29(6), pages 1043-1072, June.
    20. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    21. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:86:y:2005:i:3:p:373-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.