IDEAS home Printed from https://ideas.repec.org/a/bdr/ensayo/v20y2002i41-42p143-214.html
   My bibliography  Save this article

La inflación en Colombia: una aproximación desde las redes neuronales

Author

Listed:

Abstract

Este documento presenta un modelo de estimación de la inflación en Colombia con base en la utilización de un modelo de la red neuronal artificial (ANN). La prueba de no-linealidad de la relación entre el dinero y la inflación, al igual que diferentes argumentos teóricos mencionados en el trabajo, muestra la importancia de modelar la inflación con técnicas no lineales como las redes neuronales. La principla ventaja de esta técnica es que explota la riqueza de la estructura no lineal y la habilidad para aprender en una forma no adapatativa del proceso generador de datos subyacente. La utilizacioón de la técnica permite la obtención de pronosticos mas precisos de la inflación, con lo cual se demuestra el potencial que tienen estos modelos en el pronóstico de la inflación, al competir y en algunos casos a superar a los modelos lineales tradicionales. Con estos resultados se amplia y mejora la familia de modelos de que hoy se dispone para pronóstico de la inflación y, en particular, se fortalece el trabajo de los modelos que contienen como insumo variables monetarias.

Suggested Citation

  • Martha Misas Arango & Enrique López Enciso & Pablo Querubín Borrero, 2002. "La inflación en Colombia: una aproximación desde las redes neuronales," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 20(41-42), pages 143-214, June.
  • Handle: RePEc:bdr:ensayo:v:20:y:2002:i:41-42:p:143-214
    DOI: 10.32468/Espe.41-4203
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/Espe.41-4203
    Download Restriction: no

    File URL: https://libkey.io/10.32468/Espe.41-4203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    2. Nikola Gradojevic & Jing Yang, 2000. "The Application of Artificial Neural Networks to Exchange Rate Forecasting: The Role of Market Microstructure Variables," Staff Working Papers 00-23, Bank of Canada.
    3. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    4. Martha Misas A. & Enrique López E. & Luis Fernando Melo V., 1999. "La inflación desde una perspectiva monetaria: un modelo P* para Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 0(35), pages 5-53, June.
    5. Enrique López E. & Martha Misas A., 1998. "Un examen empírico de la curva de Phillips en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 17(34), pages 39-87, December.
    6. Lutkepohl, Helmut & Terasvirta, Timo & Wolters, Jurgen, 1999. "Investigating Stability and Linearity of a German M1 Money Demand Function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 511-525, Sept.-Oct.
    7. Gerlach, Stefan & Svensson, Lars E. O., 2003. "Money and inflation in the euro area: A case for monetary indicators?," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1649-1672, November.
    8. Svensson, Lars E. O., 1999. "Monetary policy issues for the Eurosystem," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 51(1), pages 79-136, December.
    9. Nicoletti Altimari, Sergio, 2001. "Does money lead inflation in the euro area?," Working Paper Series 63, European Central Bank.
    10. Ball, Laurence & Mankiw, N Gregory, 1994. "Asymmetric Price Adjustment and Economic Fluctuations," Economic Journal, Royal Economic Society, vol. 104(423), pages 247-261, March.
    11. Luis Arango & Andres Gonzalez, 2001. "Some evidence of smooth transition nonlinearity in Colombian inflation," Applied Economics, Taylor & Francis Journals, vol. 33(2), pages 155-162.
    12. Jean-François Fillion & André Léonard, 1997. "La courbe de Phillips au Canada : un examen de quelques hypothèses," Staff Working Papers 97-3, Bank of Canada.
    13. Raimundo Soto, "undated". "Nonlinearities in the Demand for money: A Neural Network Approach," ILADES-UAH Working Papers inv107, Universidad Alberto Hurtado/School of Economics and Business.
    14. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    15. Greg Tkacz & Sarah Hu, 1999. "Forecasting GDP Growth Using Artificial Neural Networks," Staff Working Papers 99-3, Bank of Canada.
    16. Donald P. Morgan, 1993. "Asymmetric effects of monetary policy," Economic Review, Federal Reserve Bank of Kansas City, vol. 78(Q II), pages 21-33.
    17. S. Baranzoni & P. Bianchi & L. Lambertini, 2000. "Multiproduct Firms, Product Differentiation, and Market Structure," Working Papers 368, Dipartimento Scienze Economiche, Universita' di Bologna.
    18. James Peery Cover, 1992. "Asymmetric Effects of Positive and Negative Money-Supply Shocks," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(4), pages 1261-1282.
    19. Greg Tkacz, 2000. "Non-Parametric and Neural Network Models of Inflation Changes," Staff Working Papers 00-7, Bank of Canada.
    20. Jeffrey J. Hallman & Richard D. Porter & David H. Small, 1989. "M2 per unit of potential GNP as an anchor for the price level," Staff Studies 157, Board of Governors of the Federal Reserve System (U.S.).
    21. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    22. A. M. Gazely & J. M. Binner, 2000. "The application of neural networks to the Divisia index debate: evidence from three countries," Applied Economics, Taylor & Francis Journals, vol. 32(12), pages 1607-1615.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Luis Torres, 2006. "Modelos para la Inflación Básica de Bienes Transables y No Transables en Colombia," Borradores de Economia 3246, Banco de la Republica.
    2. Luis Fernando Melo & Rubén Albeiro Loaiza Maya, 2012. "Bayesian Forecast Combination for Inflation Using Rolling Windows: An Emerging Country Case," Borradores de Economia 705, Banco de la Republica de Colombia.
    3. María Clara Aristizábal Restrepo, 2006. "Evaluación asimétrica de una red neuronal artificial:Aplicación al caso de la inflación en Colombia," Borradores de Economia 377, Banco de la Republica de Colombia.
    4. Ignacio Lozano, 2009. "Budget Deficit, Money Growth and Inflation: Evidence from the Colombian case," Money Affairs, CEMLA, vol. 0(1), pages 65-95, January-J.
    5. Héctor Mauricio Nunez Amortegui, 2005. "Una evaluación de los pronósticos de inflación en Colombia bajo el esquema de inflación objetivo," Revista de Economía del Rosario, Universidad del Rosario, December.
    6. Martha A. Misas A. & Enrique López E. & Carlos A. Arango A. & Juan Nicolás Hernández A., 2004. "No-linealidades en la demanda de efectivo en Colombia: las redes neuronales como herramienta de pronóstico," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 22(45), pages 10-57, June.
    7. Melo, Luis F. & Loaiza, Rubén A. & Villamizar-Villegas, Mauricio, 2016. "Bayesian combination for inflation forecasts: The effects of a prior based on central banks’ estimates," Economic Systems, Elsevier, vol. 40(3), pages 387-397.
    8. Norberto Rodríguez & Patricia Siado, 2003. "Un Pronóstico No Paramétrico De La Inflación Colombiana," Borradores de Economia 3691, Banco de la Republica.
    9. Carlos A. Arango A., 2004. "La Demanda De Especies Monetarias En Colombia: Estructura Y Pronóstico," Borradores de Economia 2964, Banco de la Republica.
    10. Eliana González Molano & Luis Fernando Melo Velnadia & Anderson Grajales Olarte, 2007. "Pronósticos directos de la inflación colombiana," Borradores de Economia 4247, Banco de la Republica.
    11. Luis Fernando Melo & Martha Misas A., 2004. "Modelos Estructurales de Inflación en Colombia: Estimación a Través de Mínimos Cuadrados Flexibles," Borradores de Economia 283, Banco de la Republica de Colombia.
    12. José Mauricio Salazar Sáenz, 2009. "Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia," Borradores de Economia 575, Banco de la Republica de Colombia.
    13. repec:bdr:ensayo:v::y:2004:i:45:p:10-57 is not listed on IDEAS
    14. José Mauricio Salazar Sáenz, 2009. "Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia," Borradores de Economia 5934, Banco de la Republica.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martha Misas A. & Enrique López E. & Carlos A. Arango A. & Juan Nicolás Hernández A., 2003. "La Demanda de Efectivo en Colombia: Una Caja Nagra a la Luz de las Redes Neuronales," Borradores de Economia 2963, Banco de la Republica.
    2. Luis Fernando Melo Velandia & Martha Alicia Misas Arango, 2004. "Modelos Estructurales de Inflación en Colombia: Estimación a través de Mínimos Cuadrados Flexibles," Borradores de Economia 3244, Banco de la Republica.
    3. José Luis Torres, 2006. "Modelos para la Inflación Básica de Bienes Transables y No Transables en Colombia," Borradores de Economia 3246, Banco de la Republica.
    4. Javier Gómez & José Darío Uribe & Hernando Vargas, 2002. "The Implementation Of Inflation Targeting In Colombia," Borradores de Economia 3603, Banco de la Republica.
    5. Tödter, Karl-Heinz, 2002. "Monetary indicators and policy rules in the P-star model," Discussion Paper Series 1: Economic Studies 2002,18, Deutsche Bundesbank.
    6. Jui-Chuan (Della) Chang & Dennis W. Jansen, 2005. "The Effect of Monetary Policy on Bank Lending and Aggregate Output: Asymmetries from Nonlinearities in the Lending Channel," Annals of Economics and Finance, Society for AEF, vol. 6(1), pages 129-153, May.
    7. Christian A. Johnson, 2005. "Modelos de alerta temprana para pronosticar crisis bancarias: desde la extracción de señales a las redes neuronales," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 20(1), pages 95-121, June.
    8. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    9. Jens R. Clausen & Juergen B. Donges, 2001. "European Monetary Policy: The Ongoing Debate on Conceptual Issues," The World Economy, Wiley Blackwell, vol. 24(10), pages 1309-1326, November.
    10. Cerqueira, Vinícius Dos Santos & Ribeiro, Márcio Bruno & Martinez, Thiago Sevilhano, 2014. "Propagação Assimétrica de Choques Monetários na Economia Brasileira: Evidências com base em um modelo vetorial não-linear de transição suave," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(1), April.
    11. Karras, Georgios, 1996. "Why are the effects of money-supply shocks asymmetric? Convex aggregate supply or "pushing on a string"?," Journal of Macroeconomics, Elsevier, vol. 18(4), pages 605-619.
    12. Hasanov, Mübariz & Araç, Aysen & Telatar, Funda, 2010. "Nonlinearity and structural stability in the Phillips curve: Evidence from Turkey," Economic Modelling, Elsevier, vol. 27(5), pages 1103-1115, September.
    13. repec:bdr:ensayo:v::y:2004:i:45:p:10-57 is not listed on IDEAS
    14. Christian A. Johnson & Rodrigo Vergara, 2005. "The implementation of monetary policy in an emerging economy: the case of Chile," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 20(1), pages 45-62, June.
    15. Randall E. Parker & Philip Rothman, 2004. "An Examination of the Asymmetric Effects of Money Supply Shocks in the Pre--World War I and Interwar Periods," Economic Inquiry, Western Economic Association International, vol. 42(1), pages 88-100, January.
    16. Ahrens, Steffen & Pirschel, Inske & Snower, Dennis J., 2017. "A theory of price adjustment under loss aversion," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 78-95.
    17. Khundrakpam, Jeevan Kumar, 2013. "A Note on Differential Asymmetric Effects of Money Supply and Policy Rate Shocks in India," MPRA Paper 53058, University Library of Munich, Germany.
    18. Jonathan B. Hill, 2004. "Consistent Model Specification Tests Against Smooth Transition Alternatives," Econometrics 0402004, University Library of Munich, Germany, revised 05 Aug 2005.
    19. Martha A. Misas A. & Enrique López E. & Carlos A. Arango A. & Juan Nicolás Hernández A., 2004. "No-linealidades en la demanda de efectivo en Colombia: las redes neuronales como herramienta de pronóstico," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 22(45), pages 10-57, June.
    20. Jeevan Kumar Khundrakpam, 2017. "Examining the Asymmetric Impact of Monetary Policy in India," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 11(3), pages 290-314, August.
    21. Greg Tkacz & Sarah Hu, 1999. "Forecasting GDP Growth Using Artificial Neural Networks," Staff Working Papers 99-3, Bank of Canada.

    More about this item

    Keywords

    Redes neuronales artificiales; inflación; pronóstico; no linealidad.;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:ensayo:v:20:y:2002:i:41-42:p:143-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.