IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2023014.html
   My bibliography  Save this paper

Bivariate Poisson credibility model and bonus-malus scale for claim and near-claim events

Author

Listed:
  • Simon, Pierre-Alexandre

    (Université Libre de Bruxelles)

  • Trufin, Julien

    (Université Libre de Bruxelles)

  • Denuit, Michel

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

With the emergence of telematics, huge amounts of data have become available to insurers, raising the question of their integration into motor insurance pricing. Guillen (2021) and Sun (2022) introduced the notion of near-claim events, corresponding to dangerous events, which could have triggered a claim. These events typically correspond to harsh deceleration, acceleration or cornering. Based on the motor third-party liability insurance portfolio of an insurance company operating in Belgium, we highlight that deceleration events are the best candidates for characterizing near-claim events. Then, we propose to integrate these events in the pricing structure in addition to policyholder’s claim history with the help of a bivariate Poisson-LogNormal credibility model. Finally, we design an original bonus-malus scale based on both claim and near-claim events.

Suggested Citation

  • Simon, Pierre-Alexandre & Trufin, Julien & Denuit, Michel, 2023. "Bivariate Poisson credibility model and bonus-malus scale for claim and near-claim events," LIDAM Discussion Papers ISBA 2023014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2023014
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A274553/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Guangyuan & Meng, Shengwang & Wüthrich, Mario V., 2022. "What can we learn from telematics car driving data: A survey," Insurance: Mathematics and Economics, Elsevier, vol. 104(C), pages 185-199.
    2. Dionne, G & Vanasse, C, 1992. "Automobile Insurance Ratemaking in the Presence of Asymmetrical Information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(2), pages 149-165, April-Jun.
    3. Mercedes Ayuso & Montserrat Guillen & Jens Perch Nielsen, 2019. "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data," Transportation, Springer, vol. 46(3), pages 735-752, June.
    4. Francis Duval & Jean-Philippe Boucher & Mathieu Pigeon, 2022. "How Much Telematics Information Do Insurers Need for Claim Classification?," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(4), pages 570-590, November.
    5. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    6. Pinquet, Jean, 1998. "Designing Optimal Bonus-Malus Systems from Different Types of Claims," ASTIN Bulletin, Cambridge University Press, vol. 28(2), pages 205-220, November.
    7. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    8. Gómez-Déniz, E., 2016. "Bivariate credibility bonus–malus premiums distinguishing between two types of claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 117-124.
    9. Montserrat Guillen & Jens Perch Nielsen & Ana M. Pérez-Marín & Valandis Elpidorou, 2020. "Can Automobile Insurance Telematics Predict the Risk of Near-Miss Events?," North American Actuarial Journal, Taylor & Francis Journals, vol. 24(1), pages 141-152, January.
    10. Guangyuan Gao & Shengwang Meng & Mario V. Wüthrich, 2019. "Claims frequency modeling using telematics car driving data," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(2), pages 143-162, February.
    11. Sandra Pitrebois & Michel Denuit & Jean‐François Walhin, 2006. "Multi‐Event Bonus‐Malus Scales," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(3), pages 517-528, September.
    12. Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2019. "Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data," Annals of Actuarial Science, Cambridge University Press, vol. 13(2), pages 378-399, September.
    13. Park, Sojung C. & Kim, Joseph H.T. & Ahn, Jae Youn, 2018. "Does hunger for bonuses drive the dependence between claim frequency and severity?," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 32-46.
    14. Banghee So & Jean-Philippe Boucher & Emiliano A. Valdez, 2021. "Synthetic Dataset Generation of Driver Telematics," Risks, MDPI, vol. 9(4), pages 1-19, March.
    15. Montserrat Guillen & Jens Perch Nielsen & Ana M. Pérez‐Marín, 2021. "Near‐miss telematics in motor insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 569-589, September.
    16. Cheung, Eric C.K. & Ni, Weihong & Oh, Rosy & Woo, Jae-Kyung, 2021. "Bayesian credibility under a bivariate prior on the frequency and the severity of claims," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 274-295.
    17. Corradin, Alexandre & Denuit, Michel & Detyniecki, Marcin & Grari, Vincent & Sammarco, Matteo & Trufin, Julien, 2022. "Joint Modeling Of Claim Frequencies And Behavioral Signals In Motor Insurance," ASTIN Bulletin, Cambridge University Press, vol. 52(1), pages 33-54, January.
    18. Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2019. "Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data," LIDAM Reprints ISBA 2019039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    20. Corradin, Alexandre & Denuit, Michel & Detyniecki, Marcin & Grari, Vincent & Sammarco, Matteo & Trufin, Julien, 2022. "Joint modeling of claim frequencies and behavioral signals in motor insurance," LIDAM Reprints ISBA 2022004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Jean-Philippe Boucher & Steven Côté & Montserrat Guillen, 2017. "Exposure as Duration and Distance in Telematics Motor Insurance Using Generalized Additive Models," Risks, MDPI, vol. 5(4), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montserrat Guillen & Jens Perch Nielsen & Ana M. Pérez‐Marín, 2021. "Near‐miss telematics in motor insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 569-589, September.
    2. Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
    3. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    4. Francis Duval & Jean‐Philippe Boucher & Mathieu Pigeon, 2023. "Enhancing claim classification with feature extraction from anomaly‐detection‐derived routine and peculiarity profiles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 421-458, June.
    5. Omid Ghaffarpasand & Mark Burke & Louisa K. Osei & Helen Ursell & Sam Chapman & Francis D. Pope, 2022. "Vehicle Telematics for Safer, Cleaner and More Sustainable Urban Transport: A Review," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    6. Spark C. Tseung & Ian Weng Chan & Tsz Chai Fung & Andrei L. Badescu & X. Sheldon Lin, 2022. "A Posteriori Risk Classification and Ratemaking with Random Effects in the Mixture-of-Experts Model," Papers 2209.15212, arXiv.org.
    7. Olena Ragulina, 2017. "Bonus--malus systems with different claim types and varying deductibles," Papers 1707.00917, arXiv.org.
    8. Gao, Guangyuan & Wüthrich, Mario V. & Yang, Hanfang, 2019. "Evaluation of driving risk at different speeds," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 108-119.
    9. Jiamin Yu, 2022. "Will claim history become a deprecated rating factor? An optimal design method for the real-time road risk model," Papers 2204.11585, arXiv.org.
    10. Jean-Philippe Boucher & Roxane Turcotte, 2020. "A Longitudinal Analysis of the Impact of Distance Driven on the Probability of Car Accidents," Risks, MDPI, vol. 8(3), pages 1-19, September.
    11. Angers, Jean-François & Desjardins, Denise & Dionne, Georges & Guertin, François, 2006. "Vehicle and Fleet Random Effects in a Model of Insurance Rating for Fleets of Vehicles," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 25-77, May.
    12. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    13. Dhiti Osatakul & Xueyuan Wu, 2021. "Discrete-Time Risk Models with Claim Correlated Premiums in a Markovian Environment," Risks, MDPI, vol. 9(1), pages 1-23, January.
    14. Chen, Zezhun & Dassios, Angelos & Tzougas, George, 2022. "EM estimation for the bivariate mixed exponential regression model," LSE Research Online Documents on Economics 115132, London School of Economics and Political Science, LSE Library.
    15. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    16. Nemanja Milanović & Miloš Milosavljević & Slađana Benković & Dušan Starčević & Željko Spasenić, 2020. "An Acceptance Approach for Novel Technologies in Car Insurance," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    17. Ma, Yu-Luen & Zhu, Xiaoyu & Hu, Xianbiao & Chiu, Yi-Chang, 2018. "The use of context-sensitive insurance telematics data in auto insurance rate making," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 243-258.
    18. Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression," Computational Statistics, Springer, vol. 38(2), pages 955-977, June.
    19. Zezhun Chen & Angelos Dassios & George Tzougas, 2022. "EM Estimation for the Bivariate Mixed Exponential Regression Model," Risks, MDPI, vol. 10(5), pages 1-13, May.
    20. Meng, Shengwang & Gao, Yaqian & Huang, Yifan, 2022. "Actuarial intelligence in auto insurance: Claim frequency modeling with driving behavior features and improved boosted trees," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 115-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2023014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.