IDEAS home Printed from https://ideas.repec.org/a/taf/sactxx/v2019y2019i2p143-162.html
   My bibliography  Save this article

Claims frequency modeling using telematics car driving data

Author

Listed:
  • Guangyuan Gao
  • Shengwang Meng
  • Mario V. Wüthrich

Abstract

We investigate the predictive power of covariates extracted from telematics car driving data using the speed-acceleration heatmaps of Gao, G. & Wüthrich, M. V. [(2017). Feature extraction from telematics car driving heatmaps. SSRN ID: 3070069]. These telematics covariates include K-means classification, principal components, and bottleneck activations from a bottleneck neural network. In the conducted case study it turns out that the first principal component and the bottleneck activations give a better out-of-sample prediction for claims frequencies than other traditional pricing factors such as driver's age. Based on these numerical examples we recommend the use of these telematics covariates for car insurance pricing.

Suggested Citation

  • Guangyuan Gao & Shengwang Meng & Mario V. Wüthrich, 2019. "Claims frequency modeling using telematics car driving data," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(2), pages 143-162, February.
  • Handle: RePEc:taf:sactxx:v:2019:y:2019:i:2:p:143-162
    DOI: 10.1080/03461238.2018.1523068
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03461238.2018.1523068
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03461238.2018.1523068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
    2. Francis Duval & Jean‐Philippe Boucher & Mathieu Pigeon, 2023. "Enhancing claim classification with feature extraction from anomaly‐detection‐derived routine and peculiarity profiles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 421-458, June.
    3. Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
    4. Simon, Pierre-Alexandre & Trufin, Julien & Denuit, Michel, 2023. "Bivariate Poisson credibility model and bonus-malus scale for claim and near-claim events," LIDAM Discussion Papers ISBA 2023014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:sactxx:v:2019:y:2019:i:2:p:143-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/sact .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.